Collaborative Research: Plasmonic Nanoantenna Electrode Arrays (NEAs) for Massively Multiplexed Identification of Stem-Cell Derived Cardiac Cells in Regenerative Therapies

合作研究:等离激元纳米天线电极阵列(NEA)用于再生治疗中干细胞来源的心肌细胞的大规模多重识别

基本信息

  • 批准号:
    1611290
  • 负责人:
  • 金额:
    $ 31.38万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-08-01 至 2020-07-31
  • 项目状态:
    已结题

项目摘要

Collaborative Research: Plasmonic Nanoantenna Electrode Arrays (NEAs) for Massively Multiplexed Identification of Stem-Cell Derived Cardiac Cells in Regenerative TherapiesNontechnical Abstract: Heart diseases are one of the leading causes of death in the US. Stem cellbased regenerative therapies are among the most promising treatment techniques. However, cells derived from stem cells are not uniform; only some percentage of the initial cell culture develops into the cell type of interest. Undifferentiated cells that remain within the cell population could lead to tumor.Furthermore, immature cells or cells with over-sensitivity would hinder the synchronous beating of the heart muscle cells, which can cause heart failure. Current methods to examine the purity of stem-cell based heart cells depend on cell surface markers, which is not a precise way to determine cellular functionality. This proposal offers a high-throughput screening technique to directly measure thefunctionality of differentiated heart muscle cells through their specific membrane potential changes during contraction. The proposed molecular-nanoplasmonic label-free voltage sensors will allow screening of single cell membrane potentials within confluent cell cultures and provide an accurate method for selecting and purifying functional cells from a mixed group. Development of such a precise technique would present a remarkable technological leap in stem cell-based research and strategies for cardiac regeneration. In addition to scientific and technological advancements, this research program will provide educational opportunities to underrepresented groups and minorities, and enhance involvement of undergraduate and graduate students in nanoscience and technology.Technical Abstract: The objective of this research proposal is to introduce ultrasensitive molecularplasmonic voltage probes for non-invasive, real-time and subcellular precision mapping of cardiac cell membrane potentials. These electrophysiological nanoprobes could have significant impact in differentiation of stem cell derived cardiac cells through massively parallel and precise mapping of singlecell membrane potentials. Given the lack of experimental electrophysiological techniques with high spatial and temporal precision capabilities, this research program could significantly contribute to cardiac cell studies and regenerative therapies. The specific objectives of this research program are:(1) to develop molecular-plasmonic voltage sensors by using electromagnetic simulations, high throughput fabrication and chemical synthesis techniques, and optical/electrical characterization.(2) to realize real time and label free detection of tiny potential variations at diffraction limited spot sizes with microsecond temporal resolutions and high signal-to-noise ratios.(3) to achieve non-destructive imaging of single cells in large cell populations and distinguish individual cell characteristics in -cultured/multiple cell state.The proposed research program involves theoretical understanding and numerical design of molecularplasmonic devices. Devices merging nano/micro-meter components will be fabricated using state of lithography and synthesis techniques. Fabricated devices will be tested using excitable cell populations with varying densities and cell compositions. Furthermore, changes in the membrane potentials ofcardiomyocytes that are being differentiated from hiPSC will be measured in real-time.
合作研究:等离子体纳米天线电极阵列(NEA)用于再生治疗中干细胞来源的心脏细胞的大规模复合鉴定非技术摘要:心脏病是美国主要的死亡原因之一。干细胞再生疗法是最有前景的治疗技术之一。然而,来自干细胞的细胞并不是一致的;只有最初的细胞培养的一定比例发展成感兴趣的细胞类型。留在细胞群中的未分化细胞可能会导致肿瘤。此外,不成熟的细胞或过度敏感的细胞会阻碍心肌细胞的同步跳动,这可能会导致心力衰竭。目前检测干细胞心脏细胞纯度的方法依赖于细胞表面标志物,这不是确定细胞功能的准确方法。这一建议提供了一种高通量筛选技术,可以通过收缩过程中特定的膜电位变化来直接测量分化的心肌细胞的功能。提出的分子-纳米等离子无标记电压传感器将允许筛选融合细胞培养中的单细胞膜电位,并为从混合组中选择和纯化功能细胞提供了一种准确的方法。这种精密技术的发展将在干细胞研究和心脏再生战略方面带来显着的技术飞跃。除了科技进步,这项研究计划还将为未被充分代表的群体和少数群体提供教育机会,并加强本科生和研究生对纳米科学和技术的参与。技术摘要:本研究计划的目的是引入超灵敏的分子等离子电压探针,用于无创、实时和亚细胞精确的心肌细胞膜电位标测。这些电生理纳米探针可以通过大量平行和精确的单细胞膜电位定位,对干细胞来源的心肌细胞的分化产生重大影响。鉴于缺乏具有高空间和时间精度能力的实验性电生理技术,该研究计划可能对心肌细胞研究和再生治疗做出重大贡献。该研究计划的具体目标是:(1)利用电磁模拟、高通量制造和化学合成技术以及光学/电学表征技术开发分子等离子体电压传感器。(2)以微秒级的时间分辨率和高信噪比实现对衍射有限光斑尺寸的微小电势变化的实时和无标记检测。(3)实现大细胞群体中单个细胞的无损成像,区分培养/多细胞状态下的单个细胞特征。融合纳米/微米组件的器件将使用光刻和合成技术的状态来制造。制造的设备将使用不同密度和细胞组成的可兴奋细胞群进行测试。此外,从HiPSC分化的心肌细胞膜电位的变化将被实时测量。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ahmet Yanik其他文献

Comparison of CHA₂DS₂VASc and R₂CHA₂DS₂VASc Score Estimation of In-Hospital Mortality Among COVID-19 Patients
CHA2DS2VASc 和 R2CHA2DS2VASc 评分对 COVID-19 患者院内死亡率估计的比较
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Faruk Boyaci;Mustafa Kursat Sahin;Yanki Boyaci;Ahmet Yanik;Gokhan Aksan;COVİD;Hastane İçi;Mortalitenin CHA₂DS₂VASc;R₂CHA₂DS₂VASc Skor;Tahmininin Karşılaştırılması
  • 通讯作者:
    Tahmininin Karşılaştırılması
Comparison of thallium-201 exercise SPECT and dobutamine stress echocardiography for diagnosis of coronary artery disease in patients with left bundle branch block
  • DOI:
    10.1023/a:1011973530231
  • 发表时间:
    2001-10-01
  • 期刊:
  • 影响因子:
    1.500
  • 作者:
    Izzet Tandoğan;Ertan Yetkin;Ahmet Yanik;F. Vasfi Ulusoy;Ahmet Temizhan;Sengül Cehreli;Ali Sasmaz
  • 通讯作者:
    Ali Sasmaz

Ahmet Yanik的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ahmet Yanik', 18)}}的其他基金

I-Corps: Massively Parallel High-Resolution Optical Electrophysiology
I-Corps:大规模并行高分辨率光学电生理学
  • 批准号:
    2225739
  • 财政年份:
    2022
  • 资助金额:
    $ 31.38万
  • 项目类别:
    Standard Grant
CAREER: Ionic-Type Phononic Metamaterials: Physics and Acousto-Fluidic Applications
职业:离子型声子超材料:物理和声流体应用
  • 批准号:
    1847733
  • 财政年份:
    2019
  • 资助金额:
    $ 31.38万
  • 项目类别:
    Continuing Grant
EAGER: Monolithic Phononic Crystals and Programmable Surface Acoustic Wave Microfluidics
EAGER:单片声子晶体和可编程表面声波微流体
  • 批准号:
    1642502
  • 财政年份:
    2016
  • 资助金额:
    $ 31.38万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

COLLABORATIVE RESEARCH: DMREF: Designing Plasmonic Nanoparticle Assemblies For Active Nanoscale Temperature Control By Exploiting Near- And Far-Field Coupling
合作研究:DMREF:通过利用近场和远场耦合设计用于主动纳米级温度控制的等离激元纳米颗粒组件
  • 批准号:
    2118389
  • 财政年份:
    2021
  • 资助金额:
    $ 31.38万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: DMREF: Designing Plasmonic Nanoparticle Assemblies For Active Nanoscale Temperature Control By Exploiting Near- And Far-Field Coupling
合作研究:DMREF:通过利用近场和远场耦合设计用于主动纳米级温度控制的等离激元纳米颗粒组件
  • 批准号:
    2118420
  • 财政年份:
    2021
  • 资助金额:
    $ 31.38万
  • 项目类别:
    Standard Grant
Collaborative Research: Visible-Light-Augmented Reverse Water Gas Shift Reaction on Hybrid Plasmonic Photocatalysts
合作研究:混合等离子体光催化剂上的可见光增强反向水煤气变换反应
  • 批准号:
    2102239
  • 财政年份:
    2021
  • 资助金额:
    $ 31.38万
  • 项目类别:
    Standard Grant
COLLABORATIVE RESEARCH: DMREF: Designing Plasmonic Nanoparticle Assemblies For Active Nanoscale Temperature Control By Exploiting Near- And Far-Field Coupling
合作研究:DMREF:通过利用近场和远场耦合设计用于主动纳米级温度控制的等离激元纳米颗粒组件
  • 批准号:
    2118333
  • 财政年份:
    2021
  • 资助金额:
    $ 31.38万
  • 项目类别:
    Standard Grant
Collaborative Research: Visible-Light-Augmented Reverse Water Gas Shift Reaction on Hybrid Plasmonic Photocatalysts
合作研究:混合等离子体光催化剂上的可见光增强反向水煤气变换反应
  • 批准号:
    2102238
  • 财政年份:
    2021
  • 资助金额:
    $ 31.38万
  • 项目类别:
    Standard Grant
Collaborative Research: A Stacked Plasmonic Nanopore for Tether-Free Stretching and Label-Free Sensing of hSTf Dynamics and Complex Formation at Ultra-Low Concentrations
合作研究:堆叠式等离子体纳米孔,用于超低浓度下 hSTf 动力学和复杂形成的无绳拉伸和无标记传感
  • 批准号:
    2022374
  • 财政年份:
    2020
  • 资助金额:
    $ 31.38万
  • 项目类别:
    Standard Grant
Collaborative Research: A Stacked Plasmonic Nanopore for Tether-Free Stretching and Label-Free Sensing of hSTf Dynamics and Complex Formation at Ultra-Low Concentrations
合作研究:堆叠式等离子体纳米孔,用于超低浓度下 hSTf 动力学和复杂形成的无绳拉伸和无标记传感
  • 批准号:
    2022398
  • 财政年份:
    2020
  • 资助金额:
    $ 31.38万
  • 项目类别:
    Standard Grant
Collaborative Research: Wafer-Scale, Defect-Free Assembly of Three-Dimensional Plasmonic Nanoarchitectures
合作研究:晶圆级、三维等离子体纳米结构的无缺陷组装
  • 批准号:
    1928788
  • 财政年份:
    2019
  • 资助金额:
    $ 31.38万
  • 项目类别:
    Standard Grant
Collaborative Research: Wafer-Scale, Defect-Free Assembly of Three-Dimensional Plasmonic Nanoarchitectures
合作研究:晶圆级、三维等离子体纳米结构的无缺陷组装
  • 批准号:
    1928784
  • 财政年份:
    2019
  • 资助金额:
    $ 31.38万
  • 项目类别:
    Standard Grant
Collaborative Research: Plasmonic lasing with two-dimensional heterostructures in the intrinsic regime
合作研究:本征状态下具有二维异质结构的等离激元激光
  • 批准号:
    1809361
  • 财政年份:
    2018
  • 资助金额:
    $ 31.38万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了