CAREER: Bases in Hilbert Function Spaces and Some of their Applications
职业:希尔伯特函数空间的基础及其一些应用
基本信息
- 批准号:1847796
- 负责人:
- 金额:$ 42.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-01 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project discusses different ways by which a function can be decomposed, or approximated, by sums of functions with a simple structure. Of particular interest are decompositions into sums of the simple sine and cosine functions. For functions defined over an interval, or in higher dimensions over a cube, such decompositions are a classical area of study. This project considers functions defined over more complicated sets, and studies the existence of similar decompositions in such settings. The ability to approximate or decompose functions in such a way provides a strong tool for research, which can be applied in various settings. Several applications of this theory will be studied throughout this project. As part of this project, the PI will develop, organize and teach in a new program titled "Honors level Program in Analysis for Students in the Atlanta Area". This three-year program, for promising undergraduate students, is expected to increase both the motivation and the potential of its participants to be admitted to leading graduate programs. It is well known that most measurable sets do not admit an orthogonal basis of exponentials, or of trigonometric functions. Therefore, to use harmonic analysis machinery over such sets, the rigid structure of an orthonormal basis needs to be replaced by the more flexible structure of a Riesz basis, or if this is impossible, by relaxed versions of it such as frames and Riesz sequences. In this project, the PI will continue her study (with collaborators) of such problems. For example, she will analyze questions regarding the existence of Riesz bases of exponentials, and problems related to systems with universal properties. Further, the PI will apply this theory to mathematical problems in several different settings, including sampling and interpolation of band limited signals, extensions and refinements of certain uncertainty principles, and the behavior of Gaussian noise over long intervals of time.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目讨论了不同的方法,通过这些方法可以将函数分解或近似为具有简单结构的函数之和。特别感兴趣的是分解成简单的正弦和余弦函数的总和。 对于定义在区间上的函数,或者定义在立方体上的高维函数,这样的分解是经典的研究领域。这个项目考虑在更复杂的集合上定义的函数,并研究在这种设置中存在类似的分解。以这种方式近似或分解函数的能力为研究提供了强大的工具,可以应用于各种环境。这个理论的几个应用将在整个项目中进行研究。作为该项目的一部分,PI将开发,组织和教授一个名为“亚特兰大地区学生分析荣誉课程”的新课程。这个为期三年的计划,为有前途的本科生,预计将增加其参与者的动机和潜力被录取到领先的研究生课程。众所周知,大多数可测集不允许指数或三角函数的正交基。因此,要在这样的集合上使用调和分析机器,标准正交基的刚性结构需要被更灵活的Riesz基结构所取代,或者如果这是不可能的,那么可以用它的放松版本,如框架和Riesz序列。在这个项目中,PI将继续(与合作者)研究这些问题。例如,她将分析关于指数的Riesz基的存在性问题,以及与具有普适性质的系统相关的问题。此外,PI将把这一理论应用于几种不同环境下的数学问题,包括带限信号的采样和插值,某些不确定性原理的扩展和改进,以及高斯噪声在长时间间隔内的行为。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A set with no Riesz basis of exponentials
没有指数 Riesz 基的集合
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Gady Kozma, Shahaf Nitzan
- 通讯作者:Gady Kozma, Shahaf Nitzan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sigal Nitzan其他文献
Sigal Nitzan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sigal Nitzan', 18)}}的其他基金
Exponential systems and related topics
指数系统和相关主题
- 批准号:
1600726 - 财政年份:2016
- 资助金额:
$ 42.5万 - 项目类别:
Continuing Grant
相似海外基金
Enhancing Factuality in Medical QA: Integrating Structured Knowledge Bases with Large Language Models
增强医学质量保证的真实性:将结构化知识库与大型语言模型相集成
- 批准号:
24K20832 - 财政年份:2024
- 资助金额:
$ 42.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: EDGE CMT: Genomic and molecular bases of pollination syndrome evolution in monkeyflowers
合作研究:EDGE CMT:猴花授粉综合征进化的基因组和分子基础
- 批准号:
2319721 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别:
Continuing Grant
The existence and abundance of small bases of permutation groups
排列群小基的存在性和丰度
- 批准号:
DE230100579 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别:
Discovery Early Career Researcher Award
The neural and glial bases of diet-induced deficits in control of reward-seeking actions
饮食引起的奖励寻求行为控制缺陷的神经和神经胶质基础
- 批准号:
490692 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别:
Operating Grants
Identification of Genetic and Molecular Bases of Derived Phenotypes in Primate Brain Development
灵长类动物大脑发育中衍生表型的遗传和分子基础的鉴定
- 批准号:
10841947 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别:
CAREER: Holistic Framework for Constructing Dynamic Malicious Knowledge Bases in Social Networks
职业:在社交网络中构建动态恶意知识库的整体框架
- 批准号:
2348452 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别:
Continuing Grant
Conditions for U.S. Agreement on the Closure of Contested Overseas Bases: Relations of Threat, Alliance and Base Alternatives
美国关于关闭有争议的海外基地协议的条件:威胁、联盟和基地替代方案的关系
- 批准号:
23K18762 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Identification of the molecular genetic bases for evolution to trioecious green alga through whole genome analysis
通过全基因组分析鉴定绿藻三异株进化的分子遗传基础
- 批准号:
23K19345 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Define the molecular bases for cryptococcal adaptation to host conditions by the RAM pathway
通过 RAM 途径定义隐球菌适应宿主条件的分子基础
- 批准号:
10627371 - 财政年份:2023
- 资助金额:
$ 42.5万 - 项目类别:














{{item.name}}会员




