CAREER: Study of Degeneracy Breaking Effects and Emergent Phenomena in Heterostructures of Frustrated Antiferromagnets

职业:受抑反铁磁体异质结构简并破坏效应和涌现现象的研究

基本信息

  • 批准号:
    1847887
  • 负责人:
  • 金额:
    $ 53.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-02-15 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

Non-technical abstract:Today's high tech society relies heavily on electronics such as computers, which use the movement of charge (electrons) to function. The electron has another property, its spin (i.e., rotational momentum). In most magnetic materials these spins are neatly arranged on a repeating pattern of atomic nuclei. In ferromagnets, the kind of magnets that decorate fridges, all these spins are aligned in the same direction, making the material magnetic with a well-defined north and south pole. The research team works on exotic magnets with atomic nuclei arranged in triangular patterns in which the spins cannot make up their minds about where to point. This allows the system to not adopt just one state but rather fluctuate between many available states. The "spin flips" associated with these fluctuations can be regarded as particles that have only a single magnetic pole. One of the major themes of this project is to investigate whether these spin flips can be used as information carriers in future generations of information technology, such as quantum computing. The research team synthesizes these exotic magnets in thin film form at Florida State University and the National High Magnetic Field Laboratory (NHMFL). By straining the thin film material the principal investigator tweaks the atomic positions, and the magnetic properties, which are studied using state-of-the-art facilities at the NHMFL and at national laboratories. This work is paramount in paving the way to a future in which devices based on exotic magnetic materials make use of spins, rather than charges, as information carriers. These research goals are integrated with undergraduate level curriculum development in materials synthesis to provide students at Florida State University with an education that will prepare them for the emerging advanced materials workforce. Outreach efforts include public lectures and middle school classroom activities that aim to increase (materials) science capital within the community. With these activities the principal investigator works to increase science awareness and interest in students and to empower them to make more informed decisions about their future career paths. Technical abstract:This project seeks to study ground state selection, emergent properties, and concomitant exotic excitations in geometrically frustrated systems as they are exposed to degeneracy breaking perturbations. Strong spin/lattice coupling is expected to lead to emergent ground states in structurally engineered films and heterostructures of frustrated antiferromagnets. The initial focus is on pyrochlore titanates, geometrically frustrated systems in which the Ising anisotropy leads to formation of a spin ice state showing only short range correlations. The spin ice state has been shown to host topological excitations that behave like magnetic monopoles. There is an enticing potential of harnessing topological excitations, such as monopoles, as novel types of information carriers. The project is aimed at characterizing how the spin ice physics, and the formation and dynamics of the monopoles, respond to external perturbations such as epitaxial strain. Furthermore, the application of strain in thin film samples unavoidably leads to a reduction in dimensionality, and the effect of such confinement on spin ice physics, which is predicted to be significant, is being investigated. Spin ice physics is also observed in spinel vanadates, poster materials for orbital physics in frustrated antiferromagnets. The PI utilizes epitaxial strain to tune noncollinear spin textures and stabilize a d-electron analogue of the spin ice state on the pyrochlore V sublattice in spinel vanadate thin films. The general approach for activities associated with this project can be described as, 1) systematic synthesis and structural characterization of strained thin films of frustrated antiferromagnets, 2) characterization of the magnetic properties, and associated noncollinear spin textures, using capacitive torque magnetometry measurements and elastic neutron scattering studies, and 3) development of the torque technique to include the ability to probe spin flip dynamics in spinel and pyrochlore thin films.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:今天的高科技社会严重依赖于计算机等电子产品,它们利用电荷(电子)的运动来发挥作用。电子还有另一个性质,它的自旋(即转动动量)。在大多数磁性材料中,这些自旋整齐地排列在原子核的重复图案上。在装饰冰箱的铁磁体中,所有这些自旋都在同一方向上排列,使材料具有磁性,具有明确的北极和南极。研究小组研究了原子核呈三角形排列的奇异磁铁,其中的自旋无法决定指向哪里。这允许系统不只采用一种状态,而是在许多可用状态之间波动。与这些涨落相关的“自旋翻转”可以被视为只有一个磁极的粒子。该项目的主要主题之一是调查这些自旋翻转是否可以作为未来几代信息技术的信息载体,例如量子计算。研究小组在佛罗里达州立大学和国家高磁场实验室(NHMFL)以薄膜的形式合成了这些奇异的磁铁。通过对薄膜材料进行应变,首席研究人员调整了原子位置和磁性,这些都是在NHMFL和国家实验室使用最先进的设施进行研究的。这项工作对于为基于奇异磁性材料的设备利用自旋而不是电荷作为信息载体的未来铺平道路是至关重要的。这些研究目标与材料合成本科水平的课程开发相结合,为佛罗里达州立大学的学生提供教育,使他们为新兴的先进材料劳动力做好准备。外展工作包括公共讲座和中学课堂活动,旨在增加社区内的(材料)科学资本。通过这些活动,首席研究员致力于提高学生的科学意识和兴趣,并使他们能够对自己未来的职业道路做出更明智的决定。技术摘要:本项目旨在研究几何受挫系统中的基态选择、涌现特性和伴随的奇异激发,因为它们暴露在简并破坏微扰中。强烈的自旋/晶格耦合有望导致结构工程薄膜中出现基态和受挫反铁磁体的异质结构。最初的焦点是焦绿石钛酸盐,这是一种几何上受挫的体系,在这些体系中,伊辛各向异性导致自旋冰态的形成,仅显示出短程关联。自旋冰态已被证明是行为类似磁单极子的拓扑激发的宿主。有一种诱人的潜力可以利用拓扑激发,如单极,作为新型的信息载体。该项目旨在表征自旋冰物理以及单极子的形成和动力学如何响应外部扰动,如外延应变。此外,在薄膜样品中施加应变不可避免地导致降维,这种限制对自旋冰物理的影响正在被研究中,这一影响预计将是重要的。在尖晶石钒酸盐中也观察到了自旋冰物理,这是受挫反铁磁体轨道物理的典型材料。PI利用外延应变来调节非共线自旋织构,并稳定了尖晶石钒酸盐薄膜中烧绿石V亚晶格上的自旋冰态的d电子模拟。与该项目相关的活动的一般方法可以描述为:1)系统地合成和表征受挫反铁磁体的应变薄膜,2)使用电容扭矩磁测量和弹性中子散射研究来表征磁性和相关的非共线自旋织构,以及3)开发扭矩技术以包括探测尖晶石和烧绿石薄膜中的自旋翻转动力学的能力。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Magnetic field tuning of crystal field levels and vibronic states in the spin ice compound Ho2Ti2O7 observed with far infrared reflectometry
用远红外反射计观察自旋冰化合物 Ho2Ti2O7 中晶体场水平和振动电子态的磁场调谐
  • DOI:
    10.1103/physrevb.105.165102
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Ozerov, Mykhaylo;Anand, Naween;van de Burgt, L. J.;Lu, Zhengguang;Holleman, Jade;Zhou, Haidong;McGill, Steve;Beekman, Christianne
  • 通讯作者:
    Beekman, Christianne
Growth and characterization of off-stoichiometric LaVO3 thin films
  • DOI:
    10.1103/physrevmaterials.5.085006
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Biwen Zhang;Y. Xin;E. Karapetrova;J. Holleman;S. McGill;C. Beekman
  • 通讯作者:
    Biwen Zhang;Y. Xin;E. Karapetrova;J. Holleman;S. McGill;C. Beekman
Large magnetic anisotropy and magnetostriction in thin films of CoV2O4
CoV2O4薄膜中的大磁各向异性和磁致伸缩
  • DOI:
    10.1103/physrevmaterials.7.014408
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Kim, Sangsoo;Thompson, Christie J.;Xin, Yan;Beekman, Christianne
  • 通讯作者:
    Beekman, Christianne
Modification of spin-ice physics in Ho2Ti2O7 thin films
Ho2Ti2O7 薄膜中自旋冰物理的修改
  • DOI:
    10.1103/physrevmaterials.3.084412
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Barry, Kevin;Zhang, Biwen;Anand, Naween;Xin, Yan;Vailionis, Arturas;Neu, Jennifer;Heikes, Colin;Cochran, Charis;Zhou, Haidong;Qiu, Y.
  • 通讯作者:
    Qiu, Y.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christianne Beekman其他文献

Christianne Beekman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

相似海外基金

RII Track-4: NSF: Fundamental study on hydrogen flow in porous media during repetitive drainage-imbibition processes and upscaling for underground energy storage
RII Track-4:NSF:重复排水-自吸过程中多孔介质中氢气流动的基础研究以及地下储能的升级
  • 批准号:
    2327317
  • 财政年份:
    2024
  • 资助金额:
    $ 53.5万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 53.5万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
  • 批准号:
    2346565
  • 财政年份:
    2024
  • 资助金额:
    $ 53.5万
  • 项目类别:
    Standard Grant
EAGER: Innovation in Society Study Group
EAGER:社会创新研究小组
  • 批准号:
    2348836
  • 财政年份:
    2024
  • 资助金额:
    $ 53.5万
  • 项目类别:
    Standard Grant
RUI: Spectroscopic Characterization and Low Temperature Kinetic Study of Hydrogenated Aromatic Radicals
RUI:氢化芳香族自由基的光谱表征和低温动力学研究
  • 批准号:
    2348916
  • 财政年份:
    2024
  • 资助金额:
    $ 53.5万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Continental-Scale Study of Jura-Cretaceous Basins and Melanges along the Backbone of the North American Cordillera-A Test of Mesozoic Subduction Models
合作研究:RUI:北美科迪勒拉山脊沿线汝拉-白垩纪盆地和混杂岩的大陆尺度研究——中生代俯冲模型的检验
  • 批准号:
    2346564
  • 财政年份:
    2024
  • 资助金额:
    $ 53.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: The next crisis for coral reefs is how to study vanishing coral species; AUVs equipped with AI may be the only tool for the job
合作研究:EAGER:珊瑚礁的下一个危机是如何研究正在消失的珊瑚物种;
  • 批准号:
    2333604
  • 财政年份:
    2024
  • 资助金额:
    $ 53.5万
  • 项目类别:
    Standard Grant
JApan multicenter Mitral Annular Calcification mitral stenosis study: JAMAC study
日本多中心二尖瓣环钙化二尖瓣狭窄研究:JAMAC 研究
  • 批准号:
    24K11304
  • 财政年份:
    2024
  • 资助金额:
    $ 53.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on p-type doping of ultra wide bandgap rutile-structured germanium oxide
超宽带隙金红石结构氧化锗的p型掺杂研究
  • 批准号:
    24K17312
  • 财政年份:
    2024
  • 资助金额:
    $ 53.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
大規模一般住民コホートによる手の疼痛と中枢性感作に関する疫学調査 -ROAD study-
使用大规模普通人群队列进行手部疼痛和中枢敏化的流行病学调查 -ROAD 研究 -
  • 批准号:
    24K19590
  • 财政年份:
    2024
  • 资助金额:
    $ 53.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了