CAREER: Coordinating Diverse Physical Mechanisms for Intracellular Transport

职业:协调细胞内运输的多种物理机制

基本信息

  • 批准号:
    1848057
  • 负责人:
  • 金额:
    $ 65.47万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

This research represents a fundamental study of the physics of intracellular transport, bringing new quantitative approaches to bear on the recent explosion of dynamic imaging data from living cells. By taking into account features unique to the intracellular environment, this work will make it possible to connect molecular-scale in vitro measurements of motor-cargo complexes with their behavior inside living cells. Furthermore, by analyzing in vivo imaging data in the context of quantitative transport models, the group will be able to identify the contributions of different transport modalities and pinpoint the key factors that control the balance between them. The development of predictive models for the effect of physical parameters on cell-scale transport is crucial to understanding how cells regulate organelle localization, to unraveling the mechanisms and biological consequences of transport defects, and to enabling experimental control of intracellular organization. The project is integrated with a complementary educational program that will provide opportunities for a diverse group of students (ranging from K-12 to graduate students) to explore scientific inquiry at the interface between physics and biology. Outreach efforts include the development of hands-on exploratory activities implemented in a "Young Scientists' Club" through partnership with a local elementary school and a module of the Tech Trek summer camp for middle school girls. These outreach efforts aim to broaden young students' conception of what a scientist does, while providing an early introduction to key practices of scientific research and basic concepts in the physical sciences. Research opportunities in the PI's lab are provided each summer to high school and undergraduate students to experience first-hand the nature of theoretical research at the nexus between physics and biology. Additionally, the PI is involved in teaching a summer bootcamp course to provide life sciences graduate students selected from around the world with a strong foundation of quantitative modeling skills.Biological processes ranging from metabolism to cell signaling to endocytosis require efficient movement and sorting of organelles and molecular complexes through a dynamic yet structured intracellular environment. The major modes of transport for cytoplasmic particles include diffusion, motor-driven transport along cytoskeletal filaments, and advective flow of the cytoplasm itself. A wealth of in vivo data on intracellular dynamics has become available in recent years. However, the fundamental physical mechanisms dictating this motion and the extent to which a cell can control and harness cytoplasmic dynamics for biological function remain poorly understood. In this project the PI employs theoretical and computational approaches, coupled with analysis of live cell imaging data, to explore the multi-faceted physics of intracellular transport, focusing on (1) the interplay between different transport modes, (2) the mechanics of motor-driven transport, and (3) the role of hydrodynamics in the cytoplasm. This approach brings together new results in statistical physics and soft matter mechanics with imaging data generated by collaborating cell biology groups. The PI will develop analytical results backed by stochastic simulations for delineating how the parameters of multi-modal transport and the arrangement of microtubule tracks control the dispersion and localization of organelles throughout the cytoplasm. The general mathematical model will be tested against observed organelle trajectories in tubular cell projections, including the motion of peroxisomes in fungal hyphae and mitochondria in neuronal axons. A major focus of this work will be on the mechanical and hydrodynamic aspects of active transport in eukaryotic cells. Leveraging results from polymer physics, the group will develop a physical model for transport in the presence of obstacles and through permeating cytoskeletal networks. The PI will also explore the mechanics of hitchhiking, a newly discovered form of directed transport. By bringing together approaches from soft matter physics with coarse-grained simulation techniques and data on the motion of key cytoplasmic components, this work will shed new light on the mechanisms by which cells control the distribution and delivery of their organelles.This project is being jointly supported by the Physics of Living Systems program in the Division of Physics and the Cellular Dynammics and Function Cluster in the Division of Molecular and Cellular Biosciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项研究代表了细胞内运输物理学的基础研究,为最近活细胞动态成像数据的爆炸带来了新的定量方法。通过考虑细胞内环境独特的特征,这项工作将使将运动货物复合物的分子尺度体外测量与其在活细胞内的行为联系起来成为可能。此外,通过在定量运输模型的背景下分析体内成像数据,该小组将能够确定不同运输方式的贡献,并查明控制它们之间平衡的关键因素。物理参数对细胞尺度运输的影响的预测模型的发展对于理解细胞如何调节细胞器定位、解开运输缺陷的机制和生物学后果以及使细胞内组织的实验控制成为可能至关重要。该项目与一个互补的教育计划相结合,该计划将为不同群体的学生(从K-12到研究生)提供机会,在物理学和生物学之间的界面上探索科学探究。外联工作包括通过与当地一所小学的伙伴关系,在“青年科学家俱乐部”开展实践探索活动,以及为中学女生开设技术迷航夏令营模块。这些外展工作旨在扩大青年学生对科学家工作的概念,同时及早介绍科学研究的主要做法和物理科学的基本概念。PI实验室的研究机会每年夏天都提供给高中和本科生,以亲身体验物理学和生物学之间关系的理论研究性质。此外,PI还参与了暑期训练营课程的教学,为来自世界各地的生命科学研究生提供了坚实的定量建模技能基础。从新陈代谢到细胞信号传导再到内吞作用的生物过程都需要细胞器和分子复合物在动态而结构化的细胞内环境中进行有效的运动和分选。细胞质颗粒的主要运输方式包括扩散、沿沿着细胞骨架丝的马达驱动运输和细胞质本身的平流。近年来,关于细胞内动力学的大量体内数据已经变得可用。然而,决定这种运动的基本物理机制以及细胞可以控制和利用细胞质动力学来实现生物功能的程度仍然知之甚少。在这个项目中,PI采用理论和计算方法,结合活细胞成像数据的分析,探索细胞内运输的多方面物理学,重点是(1)不同运输模式之间的相互作用,(2)马达驱动运输的力学,以及(3)流体动力学在细胞质中的作用。这种方法将统计物理学和软物质力学的新成果与合作细胞生物学小组产生的成像数据结合在一起。PI将开发由随机模拟支持的分析结果,以描述多模式运输的参数和微管轨道的排列如何控制细胞器在整个细胞质中的分散和定位。一般的数学模型将进行测试,对观察到的细胞器的轨迹在管状细胞的预测,包括真菌菌丝和神经元轴突中的线粒体的过氧化物酶体的运动。这项工作的一个主要重点将是在真核细胞中的主动运输的机械和流体动力学方面。利用聚合物物理学的结果,该小组将开发一个物理模型,用于在存在障碍物的情况下通过渗透细胞骨架网络进行运输。PI还将探索搭便车的机制,这是一种新发现的定向运输形式。通过将软物质物理学的方法与粗粒度模拟技术和关键细胞质成分运动的数据结合起来,这项工作将为细胞控制其细胞器的分布和传递的机制提供新的线索。该项目由物理学系的生命系统物理学计划和分子生物学系的细胞动力学和功能群共同支持。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Neuronal Autophagy by the Numbers
神经元自噬的数据
  • DOI:
    10.1080/27694127.2022.2163091
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cason, Sydney E.;Mogre, Saurabh S.;Koslover, Elena F.;Holzbaur, Erika L.
  • 通讯作者:
    Holzbaur, Erika L.
Hitching a Ride: Mechanics of Transport Initiation through Linker-Mediated Hitchhiking
搭便车:通过链接器介导的搭便车启动传输机制
  • DOI:
    10.1016/j.bpj.2020.01.024
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Mogre, Saurabh S;Christensen, Jenna R.;Niman, Cassandra S.;Reck-Peterson, Samara L;Koslover, Elena F
  • 通讯作者:
    Koslover, Elena F
Drive, filter, and stick: A protein sorting conspiracy in photoreceptors
驱动、过滤和粘附:光感受器中的蛋白质分类阴谋
  • DOI:
    10.1083/jcb.201909040
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    7.8
  • 作者:
    Brown, Aidan I.;Koslover, Elena F.
  • 通讯作者:
    Koslover, Elena F.
Optimizing mitochondrial maintenance in extended neuronal projections
  • DOI:
    10.1101/2020.09.11.294207
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Anamika Agrawal;Elena F. Koslover
  • 通讯作者:
    Anamika Agrawal;Elena F. Koslover
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Elena Koslover其他文献

The Interplay of Diffusion, Motor-Driven Walks, and Tethering in Intracellular Transport
  • DOI:
    10.1016/j.bpj.2017.11.1093
  • 发表时间:
    2018-02-02
  • 期刊:
  • 影响因子:
  • 作者:
    Saurabh Mogre;Elena Koslover
  • 通讯作者:
    Elena Koslover

Elena Koslover的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Elena Koslover', 18)}}的其他基金

Spatiotemporal Dynamics of Mitochondrial Populations: from Social to Physical Networks
线粒体群体的时空动态:从社会网络到物理网络
  • 批准号:
    2310229
  • 财政年份:
    2023
  • 资助金额:
    $ 65.47万
  • 项目类别:
    Continuing Grant
Collaborative Research: Integrating Theory and Experiment to Unravel Protein Transport in the ER
合作研究:结合理论和实验来解开内质网中的蛋白质转运
  • 批准号:
    2034482
  • 财政年份:
    2021
  • 资助金额:
    $ 65.47万
  • 项目类别:
    Standard Grant

相似海外基金

Hybrid optimisation for coordinating autonomous trucks and drones
用于协调自动卡车和无人机的混合优化
  • 批准号:
    DE240100042
  • 财政年份:
    2024
  • 资助金额:
    $ 65.47万
  • 项目类别:
    Discovery Early Career Researcher Award
Coordinating tissue surface contraction and basement membrane reorganisation to shape an organ in three-dimensions
协调组织表面收缩和基底膜重组以塑造三维器官
  • 批准号:
    BB/Y002075/1
  • 财政年份:
    2024
  • 资助金额:
    $ 65.47万
  • 项目类别:
    Research Grant
CICI: UCSS: Human-Centered Cybersecurity in Robotic Surgery (HCCRS) - Coordinating the Human and Cyber Infrastructure for Cybersecurity
CICI:UCCSS:机器人手术中以人为中心的网络安全 (HCCCS) - 协调网络安全的人力和网络基础设施
  • 批准号:
    2319891
  • 财政年份:
    2023
  • 资助金额:
    $ 65.47万
  • 项目类别:
    Standard Grant
Collaborative Research: Coordinating Offline Resource Allocation Decisions and Real-Time Operational Policies in Online Retail with Performance Guarantees
协作研究:在绩效保证下协调在线零售中的线下资源分配决策和实时运营策略
  • 批准号:
    2226901
  • 财政年份:
    2023
  • 资助金额:
    $ 65.47万
  • 项目类别:
    Standard Grant
IPP: AUTOIMMUNE DISEASES STATISTICAL AND CLINICAL COORDINATING CENTER (ADSCCC)
IPP:自身免疫性疾病统计和临床协调中心 (ADSCCC)
  • 批准号:
    10788032
  • 财政年份:
    2023
  • 资助金额:
    $ 65.47万
  • 项目类别:
CORONARY ARTERY RISK DEVELOPMENT IN YOUNG ADULTS (CARDIA) STUDY - COORDINATING CENTER (CC)
年轻人冠状动脉风险发展 (CARDIA) 研究 - 协调中心 (CC)
  • 批准号:
    10901063
  • 财政年份:
    2023
  • 资助金额:
    $ 65.47万
  • 项目类别:
FY23. CTN CLINICAL COORDINATING CENTER TASK ORDER 12. SEPTEMBER 15, 2023 TO SEPTEMBER 14, 2028.
23 财年。
  • 批准号:
    10938769
  • 财政年份:
    2023
  • 资助金额:
    $ 65.47万
  • 项目类别:
Collaborative Research: Coordinating Offline Resource Allocation Decisions and Real-Time Operational Policies in Online Retail with Performance Guarantees
协作研究:在绩效保证下协调在线零售中的线下资源分配决策和实时运营策略
  • 批准号:
    2226900
  • 财政年份:
    2023
  • 资助金额:
    $ 65.47万
  • 项目类别:
    Standard Grant
Coordinating gene expression and cell size: the role of feedback regulation
协调基因表达和细胞大小:反馈调节的作用
  • 批准号:
    DE230100271
  • 财政年份:
    2023
  • 资助金额:
    $ 65.47万
  • 项目类别:
    Discovery Early Career Researcher Award
A Data Coordinating Center for ENCODE
ENCODE 数据协调中心
  • 批准号:
    10804988
  • 财政年份:
    2023
  • 资助金额:
    $ 65.47万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了