CAREER: Probing Non-Equilibrium Dynamics with Ultracold Atoms in Optical, Phononic, and Photonic Lattices
职业:用超冷原子探测光学、声子和光子晶格中的非平衡动力学
基本信息
- 批准号:1848316
- 负责人:
- 金额:$ 55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical summaryUnderstanding non-equilibrium dynamics in quantum systems has been a major focus in quantum physics and materials research. Applications range from manipulating thermal and electronic transport in solids to controlling information propagation in a quantum network that behaves like an interacting quantum system. Non-equilibrium dynamics is however not very well-understood in certain quantum materials, especially for those with strong interactions between constituents. To gain precise knowledge on the quantum dynamics of interest, a quantum material with precise local probes and control is highly desired. This CAREER award supports an experimental research and education program to assemble a designer quantum material for the exploration of elusive non-equilibrium quantum dynamics. The proposed material consists of an array of cold neutral atoms, each cooled to its quantum mechanical ground state, and controlled by novel potentials formed by optical, phononic and nanophotonic lattices to mimic various types of quantum materials. The project aims at inducing and probing a variety of quantum dynamical phenomena not previously realized. Success in this project will lead to advancement in controlling atomic quantum materials and in deeper understanding of quantum many-body and statistical physics. Due to broad experimental techniques involved in this research program, the project will provide solid research training for both graduate and undergraduate students. Furthermore, in collaboration with the Purdue Physics and Astronomy Outreach office, the project will initiate a secondary-grade outreach program aimed at improving the learning capital and STEM career orientation of underrepresented minority students.Technical summaryThis CAREER award supports an experimental research and education program to explore non-equilibrium dynamics in an atomic quantum gas using a state-of-the-art cold atom toolbox for optical, phononic, and nanophotonic lattice engineering. One thrust of this CAREER project is probing quantum critical dynamics of an atomic quantum gas in an optical lattice. In particular, the PI will employ a new experimental scheme to access a superfluid-to-Mott insulator quantum critical point, enabling various ways to explore critical thermodynamics and transport problems that have remained elusive to date. Furthermore, the PI will explore quasiparticle control to engineer a phononic band gap crystal in a superfluid quantum gas that can inhibit phonon transport, just as electronic band gaps do to electrons in solid state crystals. It can be engineered to manipulate thermal and entropy transport in a superfluid sample. The PI will perform dynamical control of the phononic crystals, therefore allowing for the exploration of phononic analogues of electrodynamics phenomena. For a long-term goal of this CAREER project on probing novel quantum dynamics, the PI will aim at further integrating ultracold atoms with nanophotonic lattices to form a designer hybrid material, where the atom-surface Casimir-Polder interaction provides a deep subwavelength lattice potential for entering new regimes of quantum dynamics. Success in this project will advance our knowledge in understanding quantum critical dynamics, provide valuable insights to quantum transport in phononic bandgap materials, and potentially lead to the observation of unexpected new quantum phenomena with a designer hybrid quantum material. The broad experimental techniques involved in this research program will provide solid research training for both graduate and undergraduate students. Furthermore, in collaboration with the Purdue Physics and Astronomy Outreach office, the project will initiate a secondary-grade outreach program, aimed at improving the learning capital and STEM career orientation of underrepresented minority students.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量子系统中的非技术汇总理解是量子物理和材料研究的主要重点。应用范围从固体中的热和电子传输到控制量子网络中的信息传播,表现得像相互作用的量子系统。但是,在某些量子材料中,非平衡动力学并不是很好地理解,尤其是对于那些在成分之间相互作用较强的量子的材料而言。为了获得有关目标量子动态的精确知识,高度需要具有精确局部探针和控制的量子材料。该职业奖支持实验研究和教育计划,以组装设计人员量子材料,以探索难以捉摸的非平衡量子动力学。所提出的材料由一系列冷中性原子组成,每个原子都冷却至其量子机械基态,并由光学,声音和纳米光子晶格形成的新型电位控制,以模仿各种类型的量子材料。该项目旨在引起和探测以前未实现的各种量子动力学现象。该项目的成功将导致控制原子量子材料以及对量子多体和统计物理学的更深入了解。由于该研究计划涉及广泛的实验技术,该项目将为研究生和本科生提供扎实的研究培训。此外,在与普渡大学物理学和天文学外展办公室合作,该项目将启动一项二级外展计划,旨在改善代表性不足的少数群体学生的学习资本和STEM职业的取向。技术总结职业奖。该奖项支持一个实验性的研究和探索非平衡性动力学的实验性研究和教育计划和纳米光晶格工程。该职业项目的一个推力是探测光学晶格中原子量子气的量子关键动力学。特别是,PI将采用一种新的实验方案来访问超流量到mott绝缘子量子临界点,从而实现了各种方法来探索关键的热力学和运输问题,这些问题仍然难以捉摸。此外,PI将探索Quasiparticle控制,以在超流体量子气体中设计一个可以抑制声子传输的语音带隙晶体,就像电子带隙对固态晶体中的电子一样。它可以设计以操纵超流体样品中的热和熵传输。 PI将对音调晶体进行动态控制,因此可以探索电动力学现象的语音类似物。为了实现该职业项目探索新型量子动态的长期目标,PI将旨在将Ultrocold Atoms与纳米光子晶格的进一步整合在一起,以形成设计器混合材料,在该材料中,原子表面casimir-Polder互动为进入量子动力学的新型量化量子带来了深层的亚波长效率。该项目的成功将促进我们在理解量子临界动力学方面的知识,为语音带镜头材料中的量子传输提供宝贵的见解,并有可能通过设计器混合量子材料观察到意外的新量子现象。该研究计划涉及的广泛实验技术将为研究生和本科生提供扎实的研究培训。此外,在与普渡大学物理和天文学外展办公室合作,该项目将启动一项二级外展计划,旨在改善代表性不足的少数群体的学习资本和STEM职业生涯的取向。该奖项反映了NSF的立法使命,并被认为是通过基金会的智力评估来评估的,并值得通过评估来评估基金会的范围和广泛的范围。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Observation of Self-Patterned Defect Formation in Atomic Superfluids–from Ring Dark Solitons to Vortex Dipole Necklaces
- DOI:10.1103/physrevx.13.031029
- 发表时间:2022-11
- 期刊:
- 影响因子:12.5
- 作者:H. Tamura;Cheng-An Chen;Chen-Lung Hung
- 通讯作者:H. Tamura;Cheng-An Chen;Chen-Lung Hung
Observation of Quasiparticle Pair Production and Quantum Entanglement in Atomic Quantum Gases Quenched to an Attractive Interaction
- DOI:10.1103/physrevlett.127.060404
- 发表时间:2021-08-06
- 期刊:
- 影响因子:8.6
- 作者:Chen, Cheng-An;Khlebnikov, Sergei;Hung, Chen-Lung
- 通讯作者:Hung, Chen-Lung
Coupling Single Atoms to a Nanophotonic Whispering-Gallery-Mode Resonator via Optical Guiding
通过光导将单个原子耦合到纳米光子回音壁模式谐振器
- DOI:10.1103/physrevlett.130.103601
- 发表时间:2023
- 期刊:
- 影响因子:8.6
- 作者:Zhou, Xinchao;Tamura, Hikaru;Chang, Tzu-Han;Hung, Chen-Lung
- 通讯作者:Hung, Chen-Lung
Observation of Scale Invariance in Two-Dimensional Matter-Wave Townes Solitons
- DOI:10.1103/physrevlett.127.023604
- 发表时间:2021-07-09
- 期刊:
- 影响因子:8.6
- 作者:Chen, Cheng-An;Hung, Chen-Lung
- 通讯作者:Hung, Chen-Lung
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chen-Lung Hung其他文献
Chen-Lung Hung的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
冷原子体系中人工非阿贝尔规范场的产生与探测
- 批准号:12304287
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
范德华同质结红外探测器中的非平衡载流子雪崩倍增机制研究
- 批准号:62304231
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于光子轨道角动量关联的旋转目标非定域探测机理与方法研究
- 批准号:62305007
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
非相干散射雷达电离层探测的空间目标干扰识别与去除
- 批准号:42304191
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
非厄米人工微纳结构调控下的光生载流子输运机理及其长波红外碲镉汞探测器研究
- 批准号:62305359
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Probing the Unified Radical Generation Steps in Radical SAM Enzyme Chemistry
探究自由基 SAM 酶化学中统一的自由基生成步骤
- 批准号:
10447575 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Probing the Unified Radical Generation Steps in Radical SAM Enzyme Chemistry
探究自由基 SAM 酶化学中统一的自由基生成步骤
- 批准号:
10155128 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
Probing the Unified Radical Generation Steps in Radical SAM Enzyme Chemistry
探究自由基 SAM 酶化学中统一的自由基生成步骤
- 批准号:
10571701 - 财政年份:2021
- 资助金额:
$ 55万 - 项目类别:
CAREER: Probing Structure and Expanding Function with Genetically Encoded Non- Canonical Amino Acids
职业:用基因编码的非规范氨基酸探索结构和扩展功能
- 批准号:
1847937 - 财政年份:2019
- 资助金额:
$ 55万 - 项目类别:
Standard Grant