S&AS: FND: COLLAB: Planning Coordinated Event Observation for Structured Narratives

S

基本信息

  • 批准号:
    1849303
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-03-15 至 2023-02-28
  • 项目状态:
    已结题

项目摘要

People easily recognize the dramatic moments that unfold in human events. Dramatic turns of events are key to recognizing and communicating effective reports or stories about events. Autonomous systems will work more effectively with humans in obtaining and conveying such narrative when they too can recognize what is dramatic (or tragic, or comical) about human events. The challenge is to effectively convey such concepts to a computer in such a way that humans and autonomous systems can effectively work together in this. This research studies how to direct a team of robots to obtain video footage to produce clips that trace a dramatic story arc. It is an examination of how such systems might achieve goals that people consider to be abstract or high-level. Within this project, the programs that command teams of robots must predict likely events, direct the robots to be in position for obtaining the desired footage, and re-plan based on observed events. This challenge encompasses a rich and previously unstudied class of problems for robot systems. It will constitute a unique demonstration of robots that are capable of achieving high-level goals as they process data in forms which combine both continuous and discrete views of the world in a new and unusual way. More broadly, the research will advance how computers can fuse and summarize video streams. Both skills are needed for automatically generating synopses and in editing videos. Obvious places where this is useful include helping secure the nation (for surveillance), taming the deluge of online multimedia content (for summarization), and advancing applications in the creative industries (for editing). The research project will also use the ideas underlying these pieces in a new robotics course with students at three institutions going head-to-head in a series of competition-based class projects. This course (taught, among other places, at a Hispanic-Serving Institution) will contribute to the development of the STEM workforce of the future, helping increase American competitiveness.The project advances current knowledge by formulating new theory and developing novel algorithms for autonomous and robot systems, with a focus on those systems with minimal or no human operator intervention. The research contributes novel data representations for robots that will inhabit rich environments such as those characterized by uncertain, unanticipated, and dynamically changing circumstances. One of the foundational ideas of the project is a means to specify sophisticated mission objectives via a recursive structure using prior work in compiler theory for computer languages. The project involves a strong connection between this theoretical work and demonstrated systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人们很容易识别出人类事件中展现的戏剧性时刻。 事件的戏剧性转折是识别和传达有关事件的有效报告或故事的关键。 当自主系统也能识别出人类事件的戏剧性(或悲剧性,或滑稽性)时,它们将更有效地与人类合作,以获得和传达这种叙事。 挑战在于有效地将这些概念传达给计算机,使人类和自主系统能够有效地协同工作。这项研究研究如何指导一组机器人获得视频片段,以制作跟踪戏剧性故事弧的剪辑。这是对这些系统如何实现人们认为抽象或高级的目标的研究。在这个项目中,命令机器人团队的程序必须预测可能发生的事件,指导机器人就位以获得所需的镜头,并根据观察到的事件重新规划。这一挑战包含了丰富的和以前未研究的机器人系统的问题。 它将构成一个独特的机器人演示,能够实现高层次的目标,因为他们处理数据的形式,其中联合收割机结合了连续和离散的世界观在一个新的和不寻常的方式。 更广泛地说,这项研究将推进计算机如何融合和总结视频流。这两种技能都需要自动生成概要和编辑视频。这一点明显有用的地方包括帮助保护国家(用于监视),驯服泛滥的在线多媒体内容(用于摘要),以及推进创意产业的应用(用于编辑)。该研究项目还将在一门新的机器人课程中使用这些作品背后的想法,三家机构的学生将在一系列基于竞赛的课程项目中进行正面交锋。该课程(在西班牙裔服务机构教授)将有助于未来STEM劳动力的发展,帮助提高美国的竞争力。该项目通过制定新的理论和开发自主和机器人系统的新算法来推进现有知识,重点关注那些最少或没有人工干预的系统。该研究为机器人提供了新的数据表示,这些机器人将居住在丰富的环境中,例如那些具有不确定性,不可预见性和动态变化的环境。该项目的基本思想之一是通过递归结构使用计算机语言编译理论中的先前工作来指定复杂的使命目标。这个奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Connected Reconfiguration of Polyominoes Amid Obstacles using RRT
Packing Geometric Objects with Optimal Worst-Case Density (Multimedia Exposition)
以最佳最坏情况密度包装几何对象(多媒体博览会)
Closed-Loop Control of Magnetic Modular Cubes for 2D Self-Assembly
用于二维自组装的磁性模块化立方体的闭环控制
  • DOI:
    10.1109/lra.2023.3296008
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Lu, Yitong;Bhattacharjee, Anuruddha;Taylor, Conlan C.;Leclerc, Julien;O'Kane, Jason M.;Kim, MinJun;Becker, Aaron T.
  • 通讯作者:
    Becker, Aaron T.
Conditioning Style on Substance: Plans for Narrative Observation
实质内容的调节风格:叙事观察计划
How to Make a CG Video (Media Exposition)
如何制作 CG 视频(媒体博览会)
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aaron Becker其他文献

Emergent Leadership in Self-Managed Virtual Teams
  • DOI:
    10.1007/s10726-006-9045-7
  • 发表时间:
    2006-07-01
  • 期刊:
  • 影响因子:
    2.500
  • 作者:
    Traci A. Carte;Laku Chidambaram;Aaron Becker
  • 通讯作者:
    Aaron Becker
Using Shared Arrays in Message-Driven Parallel Programs
在消息驱动的并行程序中使用共享数组
Measuring Illumina Size Bias Using REcount: A Novel Method for Highly Accurate Quantification of Engineered Genetic Constructs
使用 REcount 测量 Illumina 尺寸偏差:一种对工程遗传结构进行高精度定量的新方法
  • DOI:
    10.1101/388108
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Daryl M. Gohl;Aaron Becker;Darrell M. Johnson;Shea Anderson;B. Billstein;S. McDevitt;K. Beckman
  • 通讯作者:
    K. Beckman
Learning How to Teach: The Case for Faculty Learning Communities.
学习如何教学:教师学习社区案例。
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David L. Gomillion;Aaron Becker;Jordana J. George;Michael J. Scialdone
  • 通讯作者:
    Michael J. Scialdone
Latency Hiding
延迟隐藏
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Dongarra;P. Luszczek;P. Feautrier;Field G. Zee;E. Chan;R. Geijn;R. Bjornson;B. Philippe;A. Sameh;G. Steele;J. Gustafson;Aaron Becker;G. Zheng;L. Kalé;K. Pingali;M. Carro;M. Hermenegildo;U. Banerjee;Roland Wismüller
  • 通讯作者:
    Roland Wismüller

Aaron Becker的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aaron Becker', 18)}}的其他基金

Collaborative Research: Magnetically-Controlled Modules with Reconfigurable Self-Assembly and Disassembly
合作研究:具有可重构自组装和拆卸功能的磁控模块
  • 批准号:
    2130793
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Wireless Magnetic Millibot Blood Clot Removal and Navigation in 3-D Printed Patient-Specific Phantoms using Echocardiography
CPS:中:合作研究:使用超声心动图在 3D 打印的患者特异性体模中进行无线磁性 Millibot 血凝块去除和导航
  • 批准号:
    1932572
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CPS: Synergy: Collaborative Research: MRI Powered & Guided Tetherless Effectors for Localized Therapeutic Interventions
CPS:协同作用:协作研究:MRI 驱动
  • 批准号:
    1646566
  • 财政年份:
    2017
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
RI: Small: Collaborative Research: Micro-Assembly Exploiting SofT RObotics (MAESTRO)
RI:小型:协作研究:微装配开发软机器人 (MAESTRO)
  • 批准号:
    1619278
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
CAREER: Massive Uniform Manipulation: Algorithmic and Control Theoretic Foundations for Large Populations of Simple Robots Controlled by Uniform Inputs
职业:大规模均匀操纵:均匀输入控制的大量简单机器人的算法和控制理论基础
  • 批准号:
    1553063
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant

相似国自然基金

Novosphingobium sp. FND-3降解呋喃丹的分子机制研究
  • 批准号:
    31670112
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目

相似海外基金

S&AS: FND: COLLAB: Planning and Control of Heterogeneous Robot Teams for Ocean Monitoring
S
  • 批准号:
    2311967
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
NRI: FND: COLLAB: RAPID: Targeted Sampling of an Unanticipated Harmful Algal Bloom in Lake Anna, Virginia with Aerial and Aquatic Robots
NRI:FND:协作:快速:利用空中和水上机器人对弗吉尼亚州安娜湖意外有害藻华进行有针对性的采样
  • 批准号:
    2001119
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
NRI: FND: COLLAB: RAPID: Targeted Sampling of an Unanticipated Harmful Algal Bloom in Lake Anna, Virginia with Aerial and Aquatic Robots
NRI:FND:协作:快速:利用空中和水上机器人对弗吉尼亚州安娜湖意外有害藻华进行有针对性的采样
  • 批准号:
    2001120
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
NRI: FND: COLLAB: RAPID: Targeted Sampling of an Unanticipated Harmful Algal Bloom in Lake Anna, Virginia with Aerial and Aquatic Robots
NRI:FND:协作:快速:利用空中和水上机器人对弗吉尼亚州安娜湖意外有害藻华进行有针对性的采样
  • 批准号:
    2001216
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
S&AS: FND: COLLAB: Adaptable Vehicular Sensing and Control for Fleet-Oriented Systems in Smart Cities
S
  • 批准号:
    1849238
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
S&AS: FND: COLLAB: Learning from Stories: Practical Value Alignment and Taskability for Autonomous Systems
S
  • 批准号:
    1849231
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
NRI: FND: COLLAB: Design of dynamic multibehavioral robots: new tools to consider design tradeoff and enable more capable robotic systems
NRI:FND:COLLAB:动态多行为机器人的设计:考虑设计权衡并实现功能更强大的机器人系统的新工具
  • 批准号:
    1924723
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
S&AS: FND: COLLAB: Adaptable Vehicular Sensing and Control for Fleet-Oriented Systems in Smart Cities
S
  • 批准号:
    1849246
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
NRI: FND: COLLAB: An Open-Source Robotic Leg Platform that Lowers the Barrier for Advanced Prosthetics Research
NRI:FND:COLLAB:降低高级假肢研究障碍的开源机器人腿部平台
  • 批准号:
    1949346
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
S&AS: FND: COLLAB: Learning from Stories: Practical Value Alignment and Taskability for Autonomous Systems
S
  • 批准号:
    1849262
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了