S&AS: FND: COLLAB: Planning and Control of Heterogeneous Robot Teams for Ocean Monitoring

S

基本信息

  • 批准号:
    2311967
  • 负责人:
  • 金额:
    $ 35.31万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

Robots in marine and littoral environments are envisioned for commerce, scientific exploration, search and rescue, and many other tasks. However, robots in such environments face significant challenges. Vehicles must act and effect change in environments with large inertial effects and disturbances, with only near-field perception. Coupled with our limited understanding of ocean dynamics and the lack of accessible and high-quality ocean flow data, these obstacles make the use of robotics technology in these varied applications extremely difficult. This project realizes an integrated, heterogeneous robotic approach towards large-scale ocean monitoring for environmental mitigation and search and rescue operations. It enables data-driven tracking and mapping of various physical, chemical, and/or biological processes of interest in marine environments, such as tracking contaminant dispersion or missing aircraft. This project significantly improves the state of the art in ocean search and monitoring technology, helping us understand and harness ocean currents, and improve the health of the world's oceans. Results from the project are integrated into education, through the PIs' courses, mentoring students on research, and expanding an existing K-12 outreach relationship. The project creates fundamental knowledge about new ways that robots can better monitor, sense, and operate in dynamic and uncertain environments. The project develops new methods for heterogeneous teams of monitoring robots to improve their environment model through current interactions with the environment; concurrently collect data, process and assimilate it into the existing model, and plan on that model; accept high-level instruction and translate goal-oriented directives such as environmental monitoring into a suitable plan for sensing, reasoning, communicating, and acting through the underlying system architecture; and monitor their actions, optimize, and reconfigure autonomously. The heterogeneous team of robots proposed includes surface vehicles providing samples at the air-sea interface and aerial robots creating flow models and acting as intermediaries within the team. The hierarchical structure of the approach takes advantage of the natural boundaries defined by Lagrangian coherent structures in the creation of a distributed sensing framework.
海洋和沿海环境中的机器人被设想用于商业、科学探索、搜索和救援以及许多其他任务。然而,在这样的环境中,机器人面临着巨大的挑战。车辆必须在只有近场感知的大惯性影响和干扰的环境中作用和影响变化。再加上我们对海洋动力学的有限了解,以及缺乏可访问和高质量的海洋流动数据,这些障碍使得机器人技术在这些不同的应用中的使用变得极其困难。该项目实现了一种综合的、不同种类的机器人方法,用于大规模海洋监测,以缓解环境和搜救行动。它能够对海洋环境中感兴趣的各种物理、化学和/或生物过程进行数据驱动的跟踪和测绘,例如跟踪污染物扩散或失踪的飞机。该项目显著提高了海洋搜索和监测技术的最先进水平,帮助我们了解和利用洋流,并改善世界海洋的健康。该项目的成果被纳入教育,通过私人投资机构的课程,指导学生的研究,并扩大现有的K-12外联关系。该项目创造了关于机器人能够更好地监控、感知和在动态和不确定环境中操作的新方法的基础知识。该项目为不同的监测机器人团队开发了新的方法,以通过当前与环境的交互来改进他们的环境模型;同时收集数据,将其处理并同化到现有模型中,并在该模型上进行计划;接受高级指令,并将环境监测等面向目标的指令转化为适当的计划,以便通过底层系统架构进行感知、推理、通信和行动;以及监测它们的行动,进行自主优化和重新配置。提议的不同种类的机器人团队包括在海空界面提供样本的水面车辆和创建流动模型并在团队中充当中间人的空中机器人。该方法的分层结构利用了由拉格朗日相干结构定义的自然边界来创建分布式感知框架。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
RLSS: real-time, decentralized, cooperative, networkless multi-robot trajectory planning using linear spatial separations
RLSS:使用线性空间分离的实时、分散、协作、无网络多机器人轨迹规划
  • DOI:
    10.1007/s10514-023-10104-w
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Şenbaşlar, Baskın;Hönig, Wolfgang;Ayanian, Nora
  • 通讯作者:
    Ayanian, Nora
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nora Ayanian其他文献

STOCHASTIC CONTROL FOR SELF-ASSEMBLY OF XBOTS
XBOTS 自组装的随机控制
  • DOI:
    10.1115/detc2008-49535
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nora Ayanian;Paul J. White;Mark H. Yim;Vijay R. Kumar
  • 通讯作者:
    Vijay R. Kumar
Guest editorial: special issue on multi-robot and multi-agent systems
  • DOI:
    10.1007/s10514-020-09908-x
  • 发表时间:
    2020-02-19
  • 期刊:
  • 影响因子:
    4.300
  • 作者:
    Nora Ayanian;Paolo Robuffo Giordano;Robert Fitch;Antonio Franchi;Lorenzo Sabattini
  • 通讯作者:
    Lorenzo Sabattini
STA-RLHF: Stackelberg Aligned Reinforcement Learning with Human Feedback
STA-RLHF:Stackelberg 将强化学习与人类反馈结合起来
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jacob Makar;Arjun Prakash;†. DenizalpGoktas;Nora Ayanian;†. AmyGreenwald
  • 通讯作者:
    †. AmyGreenwald
Automatic Optimal Multi-Agent Path Finding Algorithm Selector (Student Abstract)
自动最优多智能体路径寻找算法选择器(学生摘要)
DART: Diversity-enhanced Autonomy in Robot Teams

Nora Ayanian的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nora Ayanian', 18)}}的其他基金

CAREER: Crowdsourcing for Multirobot Coordination
职业:多机器人协调的众包
  • 批准号:
    2317145
  • 财政年份:
    2023
  • 资助金额:
    $ 35.31万
  • 项目类别:
    Continuing Grant
Expediting Solutions to Hard Multi-Robot Path Finding Instances
加速硬多机器人路径查找实例的解决方案
  • 批准号:
    2330942
  • 财政年份:
    2023
  • 资助金额:
    $ 35.31万
  • 项目类别:
    Standard Grant
S&AS: FND: COLLAB: Planning and Control of Heterogeneous Robot Teams for Ocean Monitoring
S
  • 批准号:
    1724399
  • 财政年份:
    2017
  • 资助金额:
    $ 35.31万
  • 项目类别:
    Standard Grant
REU Site: Robotics and Autonomous Systems
REU 网站:机器人和自主系统
  • 批准号:
    1659838
  • 财政年份:
    2017
  • 资助金额:
    $ 35.31万
  • 项目类别:
    Standard Grant
CAREER: Crowdsourcing for Multirobot Coordination
职业:多机器人协调的众包
  • 批准号:
    1553726
  • 财政年份:
    2016
  • 资助金额:
    $ 35.31万
  • 项目类别:
    Continuing Grant

相似国自然基金

Novosphingobium sp. FND-3降解呋喃丹的分子机制研究
  • 批准号:
    31670112
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目

相似海外基金

NRI: FND: COLLAB: RAPID: Targeted Sampling of an Unanticipated Harmful Algal Bloom in Lake Anna, Virginia with Aerial and Aquatic Robots
NRI:FND:协作:快速:利用空中和水上机器人对弗吉尼亚州安娜湖意外有害藻华进行有针对性的采样
  • 批准号:
    2001119
  • 财政年份:
    2020
  • 资助金额:
    $ 35.31万
  • 项目类别:
    Standard Grant
NRI: FND: COLLAB: RAPID: Targeted Sampling of an Unanticipated Harmful Algal Bloom in Lake Anna, Virginia with Aerial and Aquatic Robots
NRI:FND:协作:快速:利用空中和水上机器人对弗吉尼亚州安娜湖意外有害藻华进行有针对性的采样
  • 批准号:
    2001120
  • 财政年份:
    2020
  • 资助金额:
    $ 35.31万
  • 项目类别:
    Standard Grant
NRI: FND: COLLAB: RAPID: Targeted Sampling of an Unanticipated Harmful Algal Bloom in Lake Anna, Virginia with Aerial and Aquatic Robots
NRI:FND:协作:快速:利用空中和水上机器人对弗吉尼亚州安娜湖意外有害藻华进行有针对性的采样
  • 批准号:
    2001216
  • 财政年份:
    2020
  • 资助金额:
    $ 35.31万
  • 项目类别:
    Standard Grant
S&AS: FND: COLLAB: Adaptable Vehicular Sensing and Control for Fleet-Oriented Systems in Smart Cities
S
  • 批准号:
    1849238
  • 财政年份:
    2019
  • 资助金额:
    $ 35.31万
  • 项目类别:
    Standard Grant
S&AS: FND: COLLAB: Learning from Stories: Practical Value Alignment and Taskability for Autonomous Systems
S
  • 批准号:
    1849231
  • 财政年份:
    2019
  • 资助金额:
    $ 35.31万
  • 项目类别:
    Standard Grant
NRI: FND: COLLAB: Design of dynamic multibehavioral robots: new tools to consider design tradeoff and enable more capable robotic systems
NRI:FND:COLLAB:动态多行为机器人的设计:考虑设计权衡并实现功能更强大的机器人系统的新工具
  • 批准号:
    1924723
  • 财政年份:
    2019
  • 资助金额:
    $ 35.31万
  • 项目类别:
    Standard Grant
S&AS: FND: COLLAB: Adaptable Vehicular Sensing and Control for Fleet-Oriented Systems in Smart Cities
S
  • 批准号:
    1849246
  • 财政年份:
    2019
  • 资助金额:
    $ 35.31万
  • 项目类别:
    Standard Grant
NRI: FND: COLLAB: An Open-Source Robotic Leg Platform that Lowers the Barrier for Advanced Prosthetics Research
NRI:FND:COLLAB:降低高级假肢研究障碍的开源机器人腿部平台
  • 批准号:
    1949346
  • 财政年份:
    2019
  • 资助金额:
    $ 35.31万
  • 项目类别:
    Standard Grant
S&AS: FND: COLLAB: Learning from Stories: Practical Value Alignment and Taskability for Autonomous Systems
S
  • 批准号:
    1849262
  • 财政年份:
    2019
  • 资助金额:
    $ 35.31万
  • 项目类别:
    Standard Grant
NRI: FND: COLLAB: Design of dynamic multibehavioral robots: new tools to consider design tradeoff and enable more capable robotic systems
NRI:FND:COLLAB:动态多行为机器人的设计:考虑设计权衡并实现功能更强大的机器人系统的新工具
  • 批准号:
    1924303
  • 财政年份:
    2019
  • 资助金额:
    $ 35.31万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了