CRII: OAC: A Framework for Parallel Data-Intensive Computing on Emerging Architectures and Astroinformatics Applications

CRII:OAC:新兴架构和天文信息学应用的并行数据密集型计算框架

基本信息

  • 批准号:
    1849559
  • 负责人:
  • 金额:
    $ 17.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-03-15 至 2022-02-28
  • 项目状态:
    已结题

项目摘要

The amount of data that needs to be analyzed by the scientific community is increasing due to growing volumes of data collected by current and future instruments and sensors. Consequently, scientific data analysis requires a significant amount of time. To decrease the amount of time needed to analyze data, methods need to utilize more computational resources, such as more processors in a computer. While the central processing unit (CPU) in a modern computer has traditionally been used to carry out data analysis, the past decade has seen an increase in using graphics processing units (GPUs) for data analysis. The modern graphics processing unit contains thousands of processors that can be used to execute a program faster than on the CPU. However, many algorithms for data analysis do not use the GPU to its full potential within the context of the broader computer system. This project advances a framework for understanding the performance of GPUs as applied to data analysis applications. The major goal of the project is to bridge the gap between algorithms that only use the GPU, and fully integrated algorithms that exploit the strengths of both the CPU and GPU. The ensemble of algorithms that are explored in the project support the needs of the astronomy community and researchers in other scientific areas that require efficient data analysis methods. The project aims to realize a new era in CPU/GPU computing that impacts both computer science and other scientific fields. An outcome of the project is the development of materials for educators teaching at the intersection of data analysis and parallel computing. This project includes mentoring K-12, undergraduate, and graduate students. Consequently, the project serves the national interest, as stated by NSF's mission, by promoting the progress of science, and to advance the national health and prosperity. New cyberinfrastructure, such as data analysis algorithms for emerging heterogeneous architectures, are needed to address cutting-edge scientific problems. Data analysis building blocks and algorithms have many data-dependent performance bottlenecks. New architectures have the potential to alleviate some of these key bottlenecks. However, the majority of GPU research minimally involves the CPU/host, and performs most of the computation on the GPU. This is a missed opportunity to more closely integrate both data and task parallelism between the CPU and GPU to simultaneously exploit concurrency across both architectures. This project examines a selection of key algorithms in the database, machine learning, data mining, and parallel computing communities. Using these algorithms, this project explores the continuum between GPU-only and mixed hybrid parallelism (data and task parallelism between the CPU and GPU) to identify key bottlenecks that can be reduced by exploiting underutilized resources. The selected algorithms are fundamental to scientific data processing workflows, and can advance time-domain astronomy cyberinfrastructure. The project integrates data-intensive computing insights into courses at the undergraduate and graduate levels, and pedagogical modules are developed to be used by instructors for teaching concepts of mixed (data and task) parallelism across the CPU and GPU. This project includes mentoring students at the undergraduate, graduate, and K-12 levels, including outreach at science festivals to encourage participation and interest in science, technology, engineering, and mathematics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
由于当前和未来的仪器和传感器收集的数据量不断增加,科学界需要分析的数据量正在增加。因此,科学数据分析需要大量时间。为了减少分析数据所需的时间,方法需要利用更多的计算资源,例如计算机中的更多处理器。虽然现代计算机中的中央处理单元 (CPU) 传统上用于进行数据分析,但在过去十年中,使用图形处理单元 (GPU) 进行数据分析的情况有所增加。现代图形处理单元包含数千个处理器,可用于比 CPU 更快地执行程序。然而,许多数据分析算法并未在更广泛的计算机系统环境中充分利用 GPU 的潜力。该项目提出了一个框架,用于了解应用于数据分析应用程序的 GPU 的性能。该项目的主要目标是弥合仅使用 GPU 的算法与充分利用 CPU 和 GPU 优势的完全集成算法之间的差距。该项目中探索的算法集合支持天文学界和其他科学领域研究人员需要高效数据分析方法的需求。该项目旨在实现 CPU/GPU 计算的新时代,影响计算机科学和其他科学领域。 该项目的成果是为教育工作者开发数据分析和并行计算交叉教学的材料。该项目包括指导 K-12、本科生和研究生。 因此,正如 NSF 的使命所言,该项目通过促进科学进步、促进国民健康和繁荣来服务于国家利益。需要新的网络基础设施,例如用于新兴异构架构的数据分析算法,来解决尖端科学问题。数据分析构建块和算法有许多与数据相关的性能瓶颈。新架构有潜力缓解其中一些关键瓶颈。然而,大多数 GPU 研究很少涉及 CPU/主机,并在 GPU 上执行大部分计算。这是一个错失的机会,可以更紧密地集成 CPU 和 GPU 之间的数据和任务并行性,从而同时利用两种架构之间的并发性。该项目研究了数据库、机器学习、数据挖掘和并行计算社区中的一系列关键算法。使用这些算法,该项目探索了纯 GPU 并行性和混合混合并行性(CPU 和 GPU 之间的数据和任务并行性)之间的连续性,以确定可以通过利用未充分利用的资源来减少的关键瓶颈。所选算法是科学数据处理工作流程的基础,并且可以推进时域天文学网络基础设施。 该项目将数据密集型计算见解集成到本科生和研究生级别的课程中,并开发了教学模块,供教师用于教授跨 CPU 和 GPU 的混合(数据和任务)并行性概念。该项目包括指导本科生、研究生和 K-12 级别的学生,包括在科学节上进行宣传,以鼓励对科学、技术、工程和数学的参与和兴趣。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
GPU-Accelerated Similarity Self-Join for Multi-Dimensional Data
A study of work distribution and contention in database primitives on heterogeneous CPU/GPU architectures
异构 CPU/GPU 架构上数据库原语的工作分配和争用研究
Heterogeneous CPU-GPU Epsilon Grid Joins: Static and Dynamic Work Partitioning Strategies
  • DOI:
    10.1007/s41019-020-00145-x
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Benoît Gallet;M. Gowanlock
  • 通讯作者:
    Benoît Gallet;M. Gowanlock
Data-Intensive Computing Modules for Teaching Parallel and Distributed Computing
用于并行和分布式计算教学的数据密集型计算模块
Hybrid KNN-join: Parallel nearest neighbor searches exploiting CPU and GPU architectural features
  • DOI:
    10.1016/j.jpdc.2020.11.004
  • 发表时间:
    2020-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Gowanlock
  • 通讯作者:
    M. Gowanlock
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Gowanlock其他文献

The Solar System Notification Alert Processing System: Asteroid Population Outlier Detection (SNAPS)
太阳系通知警报处理系统:小行星种群异常值检测 (SNAPS)
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    Michael Gowanlock;D. Trilling;Daniel Kramer;Maria Chernyavskaya;A. McNeill
  • 通讯作者:
    A. McNeill
Parallel optimization of signal detection in active magnetospheric signal injection experiments
  • DOI:
    10.1016/j.cageo.2018.01.020
  • 发表时间:
    2018-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Michael Gowanlock;Justin D. Li;Cody M. Rude;Victor Pankratius
  • 通讯作者:
    Victor Pankratius

Michael Gowanlock的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Gowanlock', 18)}}的其他基金

CAREER: Exploiting Parallel Heterogeneous Architectures to Enable Time-domain Astronomy in the LSST era
职业:利用并行异构架构实现 LSST 时代的时域天文学
  • 批准号:
    2042155
  • 财政年份:
    2021
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

Z8-12:OH和Z8-14:OAc分别维持梨小食心虫和李小食心虫性诱剂特异性的分子基础
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目
亚硝酰钌配合物[Ru(OAc)(2mqn)2NO]的光异构反应机理研究
  • 批准号:
    21603131
  • 批准年份:
    2016
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
机械化学条件下Mn(OAc)3促进的自由基串联反应研究
  • 批准号:
    21242013
  • 批准年份:
    2012
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
  • 批准号:
    2348465
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: OAC: A Multi-fidelity Computational Framework for Discovering Governing Equations Under Uncertainty
CRII:OAC:用于发现不确定性下控制方程的多保真度计算框架
  • 批准号:
    2348495
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: OAC: Development of a modular framework for the modeling of peptide and protein binding to membranes
CRII:OAC:开发用于模拟肽和蛋白质与膜结合的模块化框架
  • 批准号:
    2347997
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: OAC: A Computational Framework for Studying Transport Phenomena in Complex Networks: From Biological Towards Sustainable and Resilient Engineering Networks
CRII:OAC:研究复杂网络中传输现象的计算框架:从生物网络到可持续和弹性工程网络
  • 批准号:
    2349122
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: OAC: An Efficient Lossy Compression Framework for Reducing Memory Footprint for Extreme-Scale Deep Learning on GPU-Based HPC Systems
CRII:OAC:一种有效的有损压缩框架,可减少基于 GPU 的 HPC 系统上超大规模深度学习的内存占用
  • 批准号:
    2303820
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: OAC: A computational framework for multiscale simulation of cardiovascular disease progression connecting cell-scale biology to organ-scale hemodynamics
CRII:OAC:将细胞尺度生物学与器官尺度血流动力学连接起来的心血管疾病进展多尺度模拟的计算框架
  • 批准号:
    2246911
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: OAC: A (near) Real-time Framework for Smart Integration of Electric Vehicles to Microgrids
CRII:OAC:电动汽车与微电网智能集成的(近)实时框架
  • 批准号:
    2153438
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: OAC: A Computational Framework for Studying Transport Phenomena in Complex Networks: From Biological Towards Sustainable and Resilient Engineering Networks
CRII:OAC:研究复杂网络中传输现象的计算框架:从生物网络到可持续和弹性工程网络
  • 批准号:
    2105012
  • 财政年份:
    2021
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: OAC: An Efficient Lossy Compression Framework for Reducing Memory Footprint for Extreme-Scale Deep Learning on GPU-Based HPC Systems
CRII:OAC:一种有效的有损压缩框架,可减少基于 GPU 的 HPC 系统上超大规模深度学习的内存占用
  • 批准号:
    1948447
  • 财政年份:
    2020
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: OAC: A computational framework for multiscale simulation of cardiovascular disease progression connecting cell-scale biology to organ-scale hemodynamics
CRII:OAC:将细胞尺度生物学与器官尺度血流动力学连接起来的心血管疾病进展多尺度模拟的计算框架
  • 批准号:
    1947559
  • 财政年份:
    2020
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了