CRII: OAC: A Computational Framework for Studying Transport Phenomena in Complex Networks: From Biological Towards Sustainable and Resilient Engineering Networks

CRII:OAC:研究复杂网络中传输现象的计算框架:从生物网络到可持续和弹性工程网络

基本信息

  • 批准号:
    2349122
  • 负责人:
  • 金额:
    $ 17.44万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

Transport networks are found everywhere in living systems, from the veins in the leaves of plants to the networks in our bodies: the respiratory system that handles the flow of air, the circulatory system that carries nutrients through blood circulation, and the networks of nerves and brain cells that transport electrical impulses. Because biological networks are necessary for transporting essential resources (blood, oxygen, water, and nutrients), they are critical for health and survival. Therefore, there is a clear need to explore the fundamental principles of these networks to better predict how they will behave under unexpected conditions in order to prevent potential failures. Exploring the underlying mechanisms of biological flow will not only advance the current state of knowledge of biological transport networks but can provide exceptional opportunities to solve complex problems in discrete calculus, graph theory, and optimization. This would, in turn, lead to improvements in engineering transport networks that are critical for maintaining human life in ways that will make them more durable and operate with greater efficiency, from networks that are large in scale, such as traffic systems, irrigation and water delivery systems, and power grids to networks that are small in scale such as fuel cells, solar cells, or artificial organs. The computational framework developed in this project will advance our knowledge of biological vascular networks, which can lead to optimized bioinspired solutions for many engineering transport networks such as water distribution and drainage networks to the treatment of cardiovascular diseases and more efficient drug delivery through the use of nanoparticles. Since the developed models for leaf venation networks in this project are critical to plant performance, the results can also enhance productivity of ecosystems and will have applications in agriculture. As such, this research project aligns with NSF’s mission to promote the progress of science and to advance national health, prosperity and welfare. This work incorporates multidisciplinary research collaborations that will make a significant contribution to education, outreach, and diversity by engaging undergraduate students, including underrepresented students, in research and incorporation of biology and engineering in outreach programs for K through 12 students.zOver billions of years of natural selection, nature has evolved complex topologies to solve a wide range of problems. A conspicuous class of such topologies are the ramified heterogeneous structures in numerous biological systems that transport resources, such as leaf venation networks, the root and axis system of plants, and the cardiovascular system of animals and humans. The evolution and function of such branched structures is not only critical for an organism’s survival and fitness but has also inspired scientists and engineers to improve the performance of many engineering flow networks such as fuel cells, solar cells and synthetic organs. The overall aim of this project is to 1) develop a robust and efficient computational framework to study transport phenomena in complex biological networks, 2) apply the framework to study the rules of nature that optimize mass and heat transfer in biological networks, and 3) assess the feasibility of bioinspired principles to design sustainable and resilient engineering networks. The proposed framework will enable the development of transformative models that not only advance our knowledge about underlying biophysical phenomena in highly heterogeneous biological networks but also provide new opportunities to apply bioinspired solutions for many engineering applications. The proposed research will result in a highly efficient and robust framework that enables (1) a fundamental understanding of the performance of complex biological transport networks and their biophysical characteristics and functions which are essential for survival, (2) an understanding of multiphysics coupled transport phenomena in highly heterogeneous biological networks, (3) an assessment of the resilience of networks to damage and varying fluxes and an understanding the underlying mechanisms and principles used by biological systems for optimization of cost and performance, and (4) assessment of the feasibility and scalability of the biological mechanisms as bioinspired solutions for practical engineering problems that range from micro to macro in scale.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
运输网络在生命系统中随处可见,从植物叶子中的静脉到我们身体中的网络:处理空气流动的呼吸系统,通过血液循环运送营养的循环系统,以及传输电脉冲的神经和脑细胞网络。由于生物网络是运输基本资源(血液、氧气、水和营养物质)所必需的,它们对健康和生存至关重要。因此,显然需要探索这些网络的基本原理,以便更好地预测它们在意外情况下的行为,从而防止潜在的故障。探索生物流动的潜在机制不仅将促进生物运输网络的知识现状,而且可以为解决离散微积分、图论和最优化中的复杂问题提供难得的机会。反过来,这将导致工程运输网络的改善,这些网络对于维持人类生命至关重要,使其更耐用,运行效率更高,从规模较大的网络,如交通系统、灌溉和供水系统,以及电网,到规模较小的网络,如燃料电池、太阳能电池或人造器官。该项目开发的计算框架将促进我们对生物血管网络的了解,这可以为许多工程运输网络带来优化的生物灵感解决方案,如水分配和排水网络,以治疗心血管疾病,并通过使用纳米颗粒更有效地输送药物。由于本项目中开发的叶片脉络网络模型对植物性能至关重要,因此其结果也可以提高生态系统的生产力,并将在农业中应用。因此,这项研究项目符合美国国家科学基金会的使命,即促进科学进步,促进国民健康、繁荣和福利。这项工作融合了多学科的研究合作,将通过吸引本科生(包括代表性不足的学生)参与研究,并将生物学和工程学纳入K-12学生的推广计划,从而为教育、推广和多样性做出重大贡献。z经过数十亿年的自然选择,自然界进化出了复杂的拓扑结构,以解决广泛的问题。这类拓扑的一个明显类别是在许多生物系统中分枝的异质结构,这些生物系统运输资源,例如植物的叶脉网络、植物的根和轴系统,以及动物和人类的心血管系统。这种分支结构的进化和功能不仅对生物体的生存和健康至关重要,而且还激励科学家和工程师改进许多工程流动网络的性能,如燃料电池、太阳能电池和合成器官。该项目的总体目标是:1)建立一个稳健和高效的计算框架来研究复杂生物网络中的传输现象;2)应用该框架来研究优化生物网络中质量和热量传递的自然规律;以及3)评估生物启发原理设计可持续和有弹性的工程网络的可行性。拟议的框架将使变革性模型的开发成为可能,这些模型不仅提高了我们对高度异质生物网络中潜在的生物物理现象的了解,而且还提供了将生物启发的解决方案应用于许多工程应用的新机会。拟议的研究将产生一个高效和稳健的框架,使(1)能够从根本上了解复杂生物传输网络的性能及其对生存至关重要的生物物理特征和功能,(2)了解高度异质生物网络中的多物理耦合传输现象,(3)评估网络对损伤和变化的通量的恢复能力,并了解生物系统用于优化成本和性能的基本机制和原理,以及(4)评估生物机制作为从微观到宏观的实际工程问题的生物启发解决方案的可行性和可扩展性。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A (Simplified) Biogeochemical Numerical Model to Predict Saturation, Porosity and Permeability During Microbially Induced Desaturation and Precipitation
  • DOI:
    10.1029/2022wr032907
  • 发表时间:
    2023-01
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Liya Wang;L. V. van Paassen;V. Pham;Nariman Mahabadi;Jibo He;Yunqi Gao
  • 通讯作者:
    Liya Wang;L. V. van Paassen;V. Pham;Nariman Mahabadi;Jibo He;Yunqi Gao
Pullout resistance of biomimetic root-inspired foundation systems
  • DOI:
    10.1007/s11440-023-02118-6
  • 发表时间:
    2023-11
  • 期刊:
  • 影响因子:
    5.7
  • 作者:
    Thibaut Houette;Meron Dibia;Nariman Mahabadi;Hunter King
  • 通讯作者:
    Thibaut Houette;Meron Dibia;Nariman Mahabadi;Hunter King
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nariman Mahabadi其他文献

Evolution of Porosity–Permeability Relationships in Bio-Mediated Processes for Ground Improvement: A Pore-Scale Computational Study
生物介导的地面改良过程中孔隙度-渗透率关系的演变:孔隙尺度计算研究
  • DOI:
    10.1061/9780784484036.064
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Nassiri;Nariman Mahabadi
  • 通讯作者:
    Nariman Mahabadi
Correction to: Microbial-Induced Desaturation in Stratified Soil Conditions
Impact of vegetated compost blankets on reducing slope deformation in small-scale shake table tests
  • DOI:
    10.1007/s12665-025-12424-9
  • 发表时间:
    2025-07-11
  • 期刊:
  • 影响因子:
    2.800
  • 作者:
    Seyed Armin Motahari Tabari;Naomi Wertz;Teresa J. Cutright;Nariman Mahabadi
  • 通讯作者:
    Nariman Mahabadi
Multiphase fluid flow through porous media: Conductivity and geomechanics
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nariman Mahabadi
  • 通讯作者:
    Nariman Mahabadi

Nariman Mahabadi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nariman Mahabadi', 18)}}的其他基金

CRII: OAC: A Computational Framework for Studying Transport Phenomena in Complex Networks: From Biological Towards Sustainable and Resilient Engineering Networks
CRII:OAC:研究复杂网络中传输现象的计算框架:从生物网络到可持续和弹性工程网络
  • 批准号:
    2105012
  • 财政年份:
    2021
  • 资助金额:
    $ 17.44万
  • 项目类别:
    Standard Grant

相似国自然基金

Z8-12:OH和Z8-14:OAc分别维持梨小食心虫和李小食心虫性诱剂特异性的分子基础
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目
亚硝酰钌配合物[Ru(OAc)(2mqn)2NO]的光异构反应机理研究
  • 批准号:
    21603131
  • 批准年份:
    2016
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
机械化学条件下Mn(OAc)3促进的自由基串联反应研究
  • 批准号:
    21242013
  • 批准年份:
    2012
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
  • 批准号:
    2414474
  • 财政年份:
    2024
  • 资助金额:
    $ 17.44万
  • 项目类别:
    Standard Grant
CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
  • 批准号:
    2348465
  • 财政年份:
    2024
  • 资助金额:
    $ 17.44万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403312
  • 财政年份:
    2024
  • 资助金额:
    $ 17.44万
  • 项目类别:
    Standard Grant
OAC Core: Cost-Adaptive Monitoring and Real-Time Tuning at Function-Level
OAC核心:功能级成本自适应监控和实时调优
  • 批准号:
    2402542
  • 财政年份:
    2024
  • 资助金额:
    $ 17.44万
  • 项目类别:
    Standard Grant
OAC Core: OAC Core Projects: GPU Geometric Data Processing
OAC 核心:OAC 核心项目:GPU 几何数据处理
  • 批准号:
    2403239
  • 财政年份:
    2024
  • 资助金额:
    $ 17.44万
  • 项目类别:
    Standard Grant
CRII: OAC: Dynamically Adaptive Unstructured Mesh Technologies for High-Order Multiscale Fluid Dynamics Simulations
CRII:OAC:用于高阶多尺度流体动力学仿真的动态自适应非结构​​化网格技术
  • 批准号:
    2348394
  • 财政年份:
    2024
  • 资助金额:
    $ 17.44万
  • 项目类别:
    Standard Grant
CRII: OAC: A Multi-fidelity Computational Framework for Discovering Governing Equations Under Uncertainty
CRII:OAC:用于发现不确定性下控制方程的多保真度计算框架
  • 批准号:
    2348495
  • 财政年份:
    2024
  • 资助金额:
    $ 17.44万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
  • 批准号:
    2414185
  • 财政年份:
    2024
  • 资助金额:
    $ 17.44万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Learning AI Surrogate of Large-Scale Spatiotemporal Simulations for Coastal Circulation
合作研究:OAC Core:学习沿海环流大规模时空模拟的人工智能替代品
  • 批准号:
    2402947
  • 财政年份:
    2024
  • 资助金额:
    $ 17.44万
  • 项目类别:
    Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
  • 批准号:
    2403313
  • 财政年份:
    2024
  • 资助金额:
    $ 17.44万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了