CRII: OAC: Real-time Computational Modeling of Crop Phenological Progress towards Scalable Satellite Precision Farming
CRII:OAC:作物物候进展的实时计算建模,实现可扩展的卫星精准农业
基本信息
- 批准号:1849821
- 负责人:
- 金额:$ 17.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-15 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Precision agriculture aims to leverage advanced data-intensive technology to maximize agricultural productivity and to reduce environmental footprints. With considerable technological advancements, it is a pivotal time to harness the intensive data collected in space and time to benchmark precision agriculture systems worldwide. The recent launch of groups of satellites designed to work together -- known as "satellite constellations" -- opens up unprecedented opportunities to revolutionize precision agriculture, through monitoring the crop phenological progress at fine spatial and temporal scales. However, the gigantic amount of data brings significant challenges to conventional remote sensing software and tools. The overarching goal of this project is to prototype advanced remote sensing cyberinfrastructure in support of both data- and compute-intensive satellite-based precision agriculture systems. This advanced cyberinfrastructure is applicable to a diverse range of agricultural systems, especially for resource poor and vulnerable smallholder farming systems. With its potential to improve global farming practices, the cyberinfrastructure helps optimize the trajectory of agricultural development to meet future crop demands as well as lower environmental impacts. The integrated educational and training activities of the project offer unique learning opportunities to students of various academic levels and backgrounds, and enhance the broader engagement of diverse scientific communities, especially minority and underrepresented groups. Therefore, this research aligns with the NSF mission to promote the progress of science and to advance the national health, prosperity and welfare.The advanced remote sensing cyberinfrastructure focuses on the development of an innovative real-time phenological computational (RTPC) model and a high-performance system to harness massive parallelism in modeling crop phenological progress towards scalable satellite-based precision farming. The RTPC model integrates dynamic complex networks with time series remote sensing, and is unique to predict the real-time crop phenological progress at both fine spatial and temporal scales. The high-performance system enhances the parallelism of the RTPC using a hybrid computation model, including a node-level computation model and a system-wide data distribution model. The node-level computation model takes advantage of multi-core architecture of computing nodes to parallelize the compute-intensive RTPC in predicting dynamic network characteristics of crop phenology. The system-wide data distribution model devises a novel Space-and-Time parallel decomposition strategy in distributing massive remote sensing time series data to reduce memory requirements and to achieve high scalability. An open-source toolkit is designed to facilitate the open development and adoption of the remote sensing cyberinfrastructure across a broad range of disciplines. Through leveraging the power of high performance computing and this hybrid computation model, the cyberinfrastructure can analyze PB-level remotely sensed data in a highly scalable manner to conduct real-time monitoring of earth system dynamics.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
精准农业旨在利用先进的数据密集型技术,最大限度地提高农业生产力,减少环境足迹。随着技术的巨大进步,现在是利用在空间和时间上收集的密集数据来衡量全球精准农业系统的关键时刻。最近发射的旨在协同工作的卫星组-称为“卫星星座”-通过在精细的空间和时间尺度上监测作物物候进展,为精确农业的革命化提供了前所未有的机会。然而,巨大的数据量给传统的遥感软件和工具带来了巨大的挑战。该项目的总体目标是制作先进的遥感网络基础设施原型,以支持数据和计算密集型卫星精准农业系统。这种先进的网络基础设施适用于各种农业系统,特别是资源贫乏和脆弱的小农农业系统。网络基础设施具有改善全球农业实践的潜力,有助于优化农业发展的轨迹,以满足未来的作物需求,并降低对环境的影响。该项目的综合教育和培训活动为不同学术水平和背景的学生提供了独特的学习机会,并加强了不同科学界,特别是少数群体和代表性不足群体的更广泛参与。因此,本研究符合NSF的使命,以促进科学的进步,促进国家的健康,繁荣和福利。先进的遥感网络基础设施的重点是开发一个创新的实时物候计算(RTPC)模型和一个高性能的系统,利用大规模的并行模拟作物物候进展可扩展的基于卫星的精准农业。RTPC模型将动态复杂网络与时间序列遥感相结合,在精细时空尺度上实时预测作物物候进程方面具有独特性。该高性能系统使用混合计算模型增强了RTPC的并行性,该混合计算模型包括节点级计算模型和系统级数据分布模型。节点级计算模型利用计算节点的多核架构,将计算密集型RTPC并行化,实现作物物候动态网络特征预测。系统级数据分发模型设计了一种新的时空并行分解策略,用于大规模遥感时间序列数据的分发,降低了存储需求,实现了高扩展性。设计了一个开放源码工具包,以便利在广泛的学科中开放开发和采用遥感网络基础设施。通过利用高性能计算和这种混合计算模型的力量,网络基础设施可以以高度可扩展的方式分析PB级遥感数据,以进行地球系统动态的实时监测。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Innovative pheno-network model in estimating crop phenological stages with satellite time series
- DOI:10.1016/j.isprsjprs.2019.04.012
- 发表时间:2019-07
- 期刊:
- 影响因子:12.7
- 作者:C. Diao
- 通讯作者:C. Diao
Complex network-based time series remote sensing model in monitoring the fall foliage transition date for peak coloration
- DOI:10.1016/j.rse.2019.05.003
- 发表时间:2019-08
- 期刊:
- 影响因子:13.5
- 作者:C. Diao
- 通讯作者:C. Diao
A Robust Hybrid Deep Learning Model for Spatiotemporal Image Fusion
- DOI:10.3390/rs13245005
- 发表时间:2021-12
- 期刊:
- 影响因子:0
- 作者:Zijun Yang;C. Diao;Bo Li
- 通讯作者:Zijun Yang;C. Diao;Bo Li
Hybrid phenology matching model for robust crop phenological retrieval
- DOI:10.1016/j.isprsjprs.2021.09.011
- 发表时间:2021-11
- 期刊:
- 影响因子:12.7
- 作者:C. Diao;Zi-Yan Yang;F. Gao;Xiaoyang Zhang;Zhengwei Yang
- 通讯作者:C. Diao;Zi-Yan Yang;F. Gao;Xiaoyang Zhang;Zhengwei Yang
Remote sensing phenological monitoring framework to characterize corn and soybean physiological growing stages
- DOI:10.1016/j.rse.2020.111960
- 发表时间:2020-10-01
- 期刊:
- 影响因子:13.5
- 作者:Diao, Chunyuan
- 通讯作者:Diao, Chunyuan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Chunyuan Diao其他文献
Quantitative and detailed spatiotemporal patterns of drought in China during 2001–2013
2001—2013年中国干旱的定量和详细时空格局
- DOI:
10.1016/j.scitotenv.2017.02.202 - 发表时间:
2017 - 期刊:
- 影响因子:9.8
- 作者:
Lei Zhou;Jianjun Wu;Xinyu Mo;Hongkui Zhou;Chunyuan Diao;Qianfeng Wang;Yuanhang Chen;Fengying Zhang - 通讯作者:
Fengying Zhang
National scale sub-meter mangrove mapping using an augmented border training sample method
基于增强边界训练样本法的国家级亚米级红树林制图
- DOI:
10.1016/j.isprsjprs.2024.12.009 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:12.200
- 作者:
Jinyan Tian;Le Wang;Chunyuan Diao;Yameng Zhang;Mingming Jia;Lin Zhu;Meng Xu;Xiaojuan Li;Huili Gong - 通讯作者:
Huili Gong
Quadratic-plateau geographically weighted regression model for estimating site-specific economically optimal input rates
用于估计特定地点经济上最优投入率的二次高原地理加权回归模型
- DOI:
10.1016/j.compag.2025.110655 - 发表时间:
2025-10-01 - 期刊:
- 影响因子:8.900
- 作者:
Chishan Zhang;Xiaofei Li;Taro Mieno;Chunyuan Diao;David S. Bullock - 通讯作者:
David S. Bullock
Chunyuan Diao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Chunyuan Diao', 18)}}的其他基金
CAREER: Scalable Remote Sensing Computational Framework for Near-real-time Crop Characterization
职业:用于近实时作物表征的可扩展遥感计算框架
- 批准号:
2048068 - 财政年份:2021
- 资助金额:
$ 17.5万 - 项目类别:
Continuing Grant
Contrasting Saltcedar Dynamics in Native and Non-Native Habitats through Integration of Remote Sensing and Population Modeling
通过遥感与种群建模的结合,对比本土和非本土栖息地的盐杉动态
- 批准号:
1951657 - 财政年份:2020
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
相似国自然基金
Z8-12:OH和Z8-14:OAc分别维持梨小食心虫和李小食心虫性诱剂特异性的分子基础
- 批准号:
- 批准年份:2021
- 资助金额:35 万元
- 项目类别:地区科学基金项目
亚硝酰钌配合物[Ru(OAc)(2mqn)2NO]的光异构反应机理研究
- 批准号:21603131
- 批准年份:2016
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
机械化学条件下Mn(OAc)3促进的自由基串联反应研究
- 批准号:21242013
- 批准年份:2012
- 资助金额:10.0 万元
- 项目类别:专项基金项目
相似海外基金
CRII: OAC: A Compressor-Assisted Collective Communication Framework for GPU-Based Large-Scale Deep Learning
CRII:OAC:基于 GPU 的大规模深度学习的压缩器辅助集体通信框架
- 批准号:
2348465 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403312 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: OAC CORE: Federated-Learning-Driven Traffic Event Management for Intelligent Transportation Systems
合作研究:OAC CORE:智能交通系统的联邦学习驱动的交通事件管理
- 批准号:
2414474 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
OAC Core: Cost-Adaptive Monitoring and Real-Time Tuning at Function-Level
OAC核心:功能级成本自适应监控和实时调优
- 批准号:
2402542 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
OAC Core: OAC Core Projects: GPU Geometric Data Processing
OAC 核心:OAC 核心项目:GPU 几何数据处理
- 批准号:
2403239 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: OAC: Dynamically Adaptive Unstructured Mesh Technologies for High-Order Multiscale Fluid Dynamics Simulations
CRII:OAC:用于高阶多尺度流体动力学仿真的动态自适应非结构化网格技术
- 批准号:
2348394 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
CRII: OAC: A Multi-fidelity Computational Framework for Discovering Governing Equations Under Uncertainty
CRII:OAC:用于发现不确定性下控制方程的多保真度计算框架
- 批准号:
2348495 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Learning AI Surrogate of Large-Scale Spatiotemporal Simulations for Coastal Circulation
合作研究:OAC Core:学习沿海环流大规模时空模拟的人工智能替代品
- 批准号:
2402947 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Distributed Graph Learning Cyberinfrastructure for Large-scale Spatiotemporal Prediction
合作研究:OAC Core:用于大规模时空预测的分布式图学习网络基础设施
- 批准号:
2403313 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant
Collaborative Research: OAC Core: Large-Scale Spatial Machine Learning for 3D Surface Topology in Hydrological Applications
合作研究:OAC 核心:水文应用中 3D 表面拓扑的大规模空间机器学习
- 批准号:
2414185 - 财政年份:2024
- 资助金额:
$ 17.5万 - 项目类别:
Standard Grant