Statistical Advances for Intensive Categorical Spatiotemporal Data from an Eye-Tracking Technique

来自眼动追踪技术的密集分类时空数据的统计进展

基本信息

  • 批准号:
    1851690
  • 负责人:
  • 金额:
    $ 36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-15 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

This research project will develop methods for analyzing eye-tracking data that will provide a more accurate view of the underlying cognitive processes of human behavior. Eye movements tend to track with attention, and eye-tracking is a flexible tool for tracking eye movements. Despite the ubiquity and utility of eye-tracking methodology, current data analytic practices are limited. The methods to be developed are general and may be used to advance knowledge in other fields where comparable data are collected. The investigators will apply the new methods in interdisciplinary collaborative efforts with researchers from psycholinguistics, education, and computer science. Graduate and undergraduate students will be trained in these analytic techniques, and the results of this project will be disseminated to both specialized and multidisciplinary communities through journal articles, conferences, workshops, and a webinar. All findings, data, code, and software from this project will be made publicly available. This research project will develop statistical models for intensive categorical time series data with the complex temporal, spatial, and dependence structures exhibited by eye-tracking data. The investigators will develop a general class of models called dynamic generalized linear mixed effect models or dynamic GLMM. These models will capture both temporal effects (serial dependence and trend effects) and spatial effects (spatial dependence and distance effects) while accounting for multiple forms of variation across data modes including trials, items, persons, item groups (or clusters), and person groups. The investigators will present a dynamic GLMM specification for binary data, which will indicate whether the participant is or is not fixating on a critical interest area at each moment in time. The investigators also will present a dynamic GLMM specification for ordered-category or partially ordered category data using an IRTree approach. This approach allows the researcher to examine cognitive processes which drive the choice among multiple stimuli for the eye to fixate on. To improve data analytic practices, methods using the dynamic GLMM will be developed following the sequence of the data analytic procedures: data description, model specification, model estimation, model selection, and model evaluation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该研究项目将开发分析眼动追踪数据的方法,从而更准确地了解人类行为的潜在认知过程。眼动往往会随着注意力而跟踪,而眼动跟踪是跟踪眼动的灵活工具。尽管眼动追踪方法的普遍性和实用性,目前的数据分析实践是有限的。有待开发的方法是通用的,可用于在收集可比数据的其他领域增进知识。研究人员将与心理语言学,教育和计算机科学的研究人员在跨学科的合作努力中应用新方法。研究生和本科生将接受这些分析技术的培训,该项目的结果将通过期刊文章,会议,研讨会和网络研讨会传播到专业和多学科社区。该项目的所有发现、数据、代码和软件都将公开提供。该研究项目将为密集的分类时间序列数据开发统计模型,这些数据具有复杂的时间,空间和依赖结构,这些结构由眼动跟踪数据表现出来。研究人员将开发一种称为动态广义线性混合效应模型或动态GLMM的通用模型。这些模型将捕获时间效应(序列依赖性和趋势效应)和空间效应(空间依赖性和距离效应),同时考虑数据模式之间的多种形式的变化,包括试验、项目、人员、项目组(或集群)和人员组。研究者将为二进制数据提供一个动态GLMM规范,该规范将指示参与者是否在每个时刻都在关注关键兴趣区域。研究人员还将使用IRTree方法为有序类别或部分有序类别数据提供动态GLMM规范。这种方法允许研究人员检查驱动眼睛注视的多个刺激中的选择的认知过程。为了改进数据分析实践,将按照数据分析程序的顺序开发使用动态GLMM的方法:数据描述、模型说明、模型估计、模型选择、该奖项反映了NSF的法定使命,并被认为是值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Space-time modeling of intensive binary time series eye-tracking data using a generalized additive logistic regression model.
使用广义加性逻辑回归模型对密集二进制时间序列眼动追踪数据进行时空建模。
  • DOI:
    10.1037/met0000444
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Cho, Sun-Joo;Brown-Schmidt, Sarah;De Boeck, Paul;Naveiras, Matthew
  • 通讯作者:
    Naveiras, Matthew
The limited role of hippocampal declarative memory in transient semantic activation during online language processing
海马陈述性记忆在在线语言处理过程中短暂语义激活中的有限作用
  • DOI:
    10.1016/j.neuropsychologia.2020.107730get
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Brown-Schmidt, S.
  • 通讯作者:
    Brown-Schmidt, S.
Incorporating Functional Response Time Effects into a Signal Detection Theory Model
将功能响应时间效应纳入信号检测理论模型
  • DOI:
    10.1007/s11336-023-09906-9
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Cho, Sun-Joo;Brown-Schmidt, Sarah;Boeck, Paul De;Naveiras, Matthew;Yoon, Si On;Benjamin, Aaron
  • 通讯作者:
    Benjamin, Aaron
Level-specific residuals and diagnostic measures, plots, and tests for random effects selection in multilevel and mixed models
多水平和混合模型中随机效应选择的水平特定残差和诊断测量、绘图和检验
  • DOI:
    10.3758/s13428-021-01709-z
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Cho, Sun-Joo;De Boeck, Paul;Naveiras, Matthew;Ervin, Hope
  • 通讯作者:
    Ervin, Hope
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sun-Joo Cho其他文献

Not all DIF is shaped similarly
  • DOI:
    10.1007/s11336-021-09772-3
  • 发表时间:
    2021-09-01
  • 期刊:
  • 影响因子:
    3.100
  • 作者:
    Paul De Boeck;Sun-Joo Cho
  • 通讯作者:
    Sun-Joo Cho
Improved Scoring of the Center for Epidemiologic Studies Depression Scale – Revised: An Item Response Theory Analysis
  • DOI:
    10.1007/s10862-024-10155-y
  • 发表时间:
    2024-07-16
  • 期刊:
  • 影响因子:
    1.700
  • 作者:
    Christian A. L. Bean;Sophia B. Mueller;George Abitante;Jeffrey A. Ciesla;Sun-Joo Cho;David A. Cole
  • 通讯作者:
    David A. Cole

Sun-Joo Cho的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Advances to the EMT Modeling and Simulation of Restoration Processes for Future Grids
职业:未来电网恢复过程的 EMT 建模和仿真的进展
  • 批准号:
    2338621
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Advances in rational operations in free analysis
自由分析中理性运算的进展
  • 批准号:
    2348720
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
REU Site: Recent Advances in Natural Language Processing
REU 网站:自然语言处理的最新进展
  • 批准号:
    2349452
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Conference: PDE in Moab: Advances in Theory and Application
会议:摩押偏微分方程:理论与应用的进展
  • 批准号:
    2350128
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Conference: Geometric Measure Theory, Harmonic Analysis, and Partial Differential Equations: Recent Advances
会议:几何测度理论、调和分析和偏微分方程:最新进展
  • 批准号:
    2402028
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Conference: Recent advances in nonlinear Partial Differential Equations
会议:非线性偏微分方程的最新进展
  • 批准号:
    2346780
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
CAREER: Towards Watersheds as Water Treatment Plants through Advances in Distributed Sensing and Control
职业:通过分布式传感和控制的进步将流域打造为水处理厂
  • 批准号:
    2340176
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
CAREER: Theoretical and Computational Advances for Enabling Robust Numerical Guarantees in Linear and Mixed Integer Programming Solvers
职业:在线性和混合整数规划求解器中实现鲁棒数值保证的理论和计算进展
  • 批准号:
    2340527
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
Geometric Harmonic Analysis: Advances in Radon-like Transforms and Related Topics
几何调和分析:类氡变换及相关主题的进展
  • 批准号:
    2348384
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Standard Grant
Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
  • 批准号:
    2414688
  • 财政年份:
    2024
  • 资助金额:
    $ 36万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了