Collaborative Research: Algorithm and Theory for Interface Computations
协作研究:接口计算的算法和理论
基本信息
- 批准号:1852597
- 负责人:
- 金额:$ 9.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Phenomena in which a fluid interacts with an immersed elastic structure abound in nature and in everyday life. Such fluid-structure interaction (FSI) problems include the swimming of microorganisms, the flying of birds, blood flow in the heart, and the deformation of leaves in the wind. One powerful way to understand such FSI problems is through computer simulation. Many FSI problems lead to challenging computational problems that call for significant improvements over currently available algorithms. The immersed boundary (IB) method is a popular computational method for FSI problems, and one major goal of this project is to understand the mathematical properties of the IB method to aid in the development of faster and more robust numerical algorithms. Another goal is to adapt the IB method so that it can handle problems in which fluid (water) can flow through an elastic structure. Such problems are particularly important for the understanding of movement and shape changes of biological cells. This cell-biological aspect of the work will be performed in collaboration with experimental biophysicists. The project will train undergraduate and graduate students in the mathematical and computational sciences through research on these problems.This project consists of two major aims in theory and algorithmic development for computational problems with moving membrane interfaces. On the theoretical side, the PIs will establish a convergence theory for the immersed boundary (IB) method. The IB method is a widely used numerical method for fluid structure interaction problems, but despite its popularity, its convergence properties are poorly understood. Convergence analysis for the IB method will be one of the first to be established for a fluid structure interaction algorithm in which a dual grid is used; one for the fluid and another for the elastic structure. Such an analysis will clarify the effect of grid and time discretization parameters on the stability properties of the IB method. On the algorithmic side, the PIs will develop a numerical scheme to handle electrodiffusion of ions and transmembrane water flow in the presence of deformable elastic membranes. A novel feature of the osmotic water flow problem in contrast to conventional fluid structure interaction problems is that the interfacial membrane does not move with respect to the local fluid velocity and that this slip velocity is controlled by the jump in concentration of a diffusing chemical across the membrane interface. The fluid structure interaction will be treated with the IB method whereas chemical diffusion will be treated using a Cartesian embedded boundary method. This algorithm will be applied to study the interplay between electrophysiology/osmotic water flow and cell mechanics, an area that is poorly explored theoretically but whose importance is becoming increasingly clear.
流体与浸没的弹性结构相互作用的现象在自然界和日常生活中比比皆是。这些流体-结构相互作用(FSI)问题包括微生物的游动、鸟类的飞行、心脏中的血液流动以及树叶在风中的变形。理解这种流固耦合问题的一个有效方法是通过计算机模拟。许多FSI问题导致具有挑战性的计算问题,要求显着改善目前可用的算法。浸没边界(IB)方法是一种流行的计算方法FSI问题,本项目的一个主要目标是了解IB方法的数学特性,以帮助开发更快,更强大的数值算法。另一个目标是调整IB方法,以便它可以处理流体(水)可以流过弹性结构的问题。这些问题对于理解生物细胞的运动和形状变化特别重要。这项工作的细胞生物学方面将与实验生物药理学家合作进行。本项目将通过对这些问题的研究,培养数学和计算科学方面的本科生和研究生。本项目包括两个主要目标,即关于移动膜界面计算问题的理论和算法开发。在理论方面,PI将建立浸入边界(IB)方法的收敛理论。IB方法是一种广泛应用于流固耦合问题的数值方法,但尽管它的流行,其收敛性知之甚少。IB方法的收敛性分析将是第一个建立的流体-结构相互作用算法,其中使用双网格;一个用于流体,另一个用于弹性结构。这样的分析将澄清网格和时间离散化参数对IB方法的稳定性的影响。在算法方面,PI将开发一个数值方案来处理可变形弹性膜存在下的离子电扩散和跨膜水流。与传统的流体结构相互作用问题相比,渗透水流问题的一个新特征是界面膜不相对于局部流体速度移动,并且这种滑移速度由跨膜界面的扩散化学品浓度的跳跃控制。流体-结构相互作用将用IB方法处理,而化学扩散将用笛卡尔嵌入边界方法处理。该算法将被应用于研究电生理学/渗透水流和细胞力学之间的相互作用,这是一个理论上探索不足,但其重要性正变得越来越清楚的领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lingxing Yao其他文献
Viscoelasticity at microscopic and macroscopic scales: characterization and prediction
微观和宏观尺度的粘弹性:表征和预测
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Lingxing Yao - 通讯作者:
Lingxing Yao
Simulations of chemical transport and reaction in a suspension of cells I: an augmented forcing point method for the stationary case
细胞悬浮液中化学传递和反应的模拟 I:静止情况下的增强受力点方法
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Lingxing Yao;A. Fogelson - 通讯作者:
A. Fogelson
Shear flow of active matter in thin channels
细通道中活性物质的剪切流
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
M. Calderer;Dmitry Golovaty;Lingxing Yao;Longhua Zhao - 通讯作者:
Longhua Zhao
Lingxing Yao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lingxing Yao', 18)}}的其他基金
Collaborative Research: Algorithm and Theory for Interface Computations
协作研究:接口计算的算法和理论
- 批准号:
1620198 - 财政年份:2016
- 资助金额:
$ 9.52万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for Strongly Correlated Condensed Matter Systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
- 批准号:
2335904 - 财政年份:2024
- 资助金额:
$ 9.52万 - 项目类别:
Continuing Grant
Collaborative Research: Worm Algorithm and Diagrammatic Monte Carlo for Strongly Correlated Condensed Matter Systems
合作研究:强相关凝聚态系统的蠕虫算法和图解蒙特卡罗
- 批准号:
2335905 - 财政年份:2024
- 资助金额:
$ 9.52万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Enabling Efficient 3D Perception: An Architecture-Algorithm Co-Design Approach
协作研究:SHF:小型:实现高效的 3D 感知:架构-算法协同设计方法
- 批准号:
2334624 - 财政年份:2023
- 资助金额:
$ 9.52万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Accelerating Privacy-Preserving Machine Learning as a Service: From Algorithm to Hardware
协作研究:SaTC:核心:中:加速保护隐私的机器学习即服务:从算法到硬件
- 批准号:
2247893 - 财政年份:2023
- 资助金额:
$ 9.52万 - 项目类别:
Continuing Grant
Collaborative Research: An Optimal Algorithm for Orthogonal Eigenvectors of Symmetric Tridiagonals
协作研究:对称三对角线正交特征向量的最优算法
- 批准号:
2309596 - 财政年份:2023
- 资助金额:
$ 9.52万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Memory-efficient Algorithm and Hardware Co-Design for Spike-based Edge Computing
协作研究:SHF:中:基于 Spike 的边缘计算的内存高效算法和硬件协同设计
- 批准号:
2403723 - 财政年份:2023
- 资助金额:
$ 9.52万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Memory-efficient Algorithm and Hardware Co-Design for Spike-based Edge Computing
合作研究:SHF:中:基于 Spike 的边缘计算的内存高效算法和硬件协同设计
- 批准号:
2312366 - 财政年份:2023
- 资助金额:
$ 9.52万 - 项目类别:
Standard Grant
Collaborative Research: CCRI: New: A Research News Recommender Infrastructure with Live Users for Algorithm and Interface Experimentation
合作研究:CCRI:新:研究新闻推荐基础设施与实时用户进行算法和界面实验
- 批准号:
2232554 - 财政年份:2023
- 资助金额:
$ 9.52万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Accelerating Privacy-Preserving Machine Learning as a Service: From Algorithm to Hardware
协作研究:SaTC:核心:中:加速保护隐私的机器学习即服务:从算法到硬件
- 批准号:
2247891 - 财政年份:2023
- 资助金额:
$ 9.52万 - 项目类别:
Continuing Grant
Collaborative Research: CCRI: New: A Research News Recommender Infrastructure with Live Users for Algorithm and Interface Experimentation
合作研究:CCRI:新:研究新闻推荐基础设施与实时用户进行算法和界面实验
- 批准号:
2232551 - 财政年份:2023
- 资助金额:
$ 9.52万 - 项目类别:
Standard Grant