Collaborative Research: SaTC: CORE: Medium: Accelerating Privacy-Preserving Machine Learning as a Service: From Algorithm to Hardware
协作研究:SaTC:核心:中:加速保护隐私的机器学习即服务:从算法到硬件
基本信息
- 批准号:2247893
- 负责人:
- 金额:$ 39.98万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-07-01 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Machine learning (ML) as a service is being overwhelmingly driven by the ever-increasing clients' intelligent data processing needs through the use of cloud servers, where powerful ML models are hosted. Although pervasive, out-sourced ML processing poses real threats to personal or business providers' data privacy. For example, the clients either need to share their sensitive data, such as healthcare records, financial information, with the server, or the server has to disclose the model to the clients. To guarantee privacy, the rise of cryptographic protocols, such as Homomorphic Encryption (HE), Multi-Party Computation (MPC), enable ML analytics directly on the encrypted data. While enticing, there still exists a big gap between the theory and practice, e.g., long latency due to the prohibitively expensive computation or communication overhead over ciphertext. This project aims to practically accelerate the private ML service by offering a full-fledged development of efficient, scalable and encryption-conscious computing paradigms. The project's novelties lie in new ML-specific cryptographic operators, accuracy-preserving and crypto-friendly neural architectures, and pioneered algorithm-hardware co-design methodologies. The project's broader significance and importance are: (1) to advance trustworthy artificial intelligence (AI), one of the national strategic pillars of the National AI Initiative; (2) to deepen the understanding of interactions among cryptography, machine learning and hardware acceleration; (3) to enrich the computer engineering curriculum, and the training of students from diverse backgrounds through relevant programs at Lehigh University, Northeastern University, and the University of Connecticut.The project will develop a multifaceted design paradigm for efficient, scalable and practical algorithm-hardware co-optimized solutions to significantly accelerate privacy-preserving machine learning on hardware platforms such as FPGA. This project consists of three intervening research thrusts: (1) to orchestrate information representation and model sparsity in the encryption domain to fundamentally decrease the memory and computation footprint in the HE inference; (2) to overcome the ultra-high overhead associated with the MPC-based solution through techniques such as encryption-aware model truncation and partial hardware reconfiguration; (3) to search for crypto-friendly and accuracy-preserving neural architectures via jointly optimizing non-linear operation reduction, and closed loop "algorithm-hardware" design space exploration.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
通过使用云服务器,机器学习(ML)即服务正在被不断增长的客户智能数据处理需求所驱动,云服务器托管着功能强大的ML模型。外包的机器学习处理虽然普遍存在,但对个人或业务提供商的数据隐私构成了真正的威胁。例如,客户机要么需要与服务器共享其敏感数据(如医疗记录、财务信息),要么服务器必须向客户机公开模型。为了保证隐私,同态加密(HE)、多方计算(MPC)等加密协议的兴起,使机器学习能够直接对加密数据进行分析。虽然很诱人,但理论和实践之间仍然存在很大的差距,例如,由于密文的计算或通信开销过高而导致的长延迟。该项目旨在通过提供高效、可扩展和加密意识计算范式的全面开发,实际加速私有ML服务。该项目的新颖之处在于新的特定于ml的加密运算符,保持准确性和加密友好的神经架构,以及开创性的算法硬件协同设计方法。该项目更广泛的意义和重要性是:(1)推进可信赖的人工智能(AI),这是国家人工智能倡议的国家战略支柱之一;(2)加深对密码学、机器学习和硬件加速之间相互作用的理解;(3)丰富计算机工程课程,并通过利哈伊大学、东北大学和康涅狄格大学的相关项目培养不同背景的学生。该项目将为高效、可扩展和实用的算法-硬件协同优化解决方案开发一个多方面的设计范例,以显著加速FPGA等硬件平台上保护隐私的机器学习。该项目包括三个干预研究重点:(1)协调加密领域的信息表示和模型稀疏性,从根本上减少HE推理中的内存和计算占用;(2)通过加密感知模型截断和部分硬件重构等技术克服与基于mpc的解决方案相关的超高开销;(3)通过联合优化非线性运算约简和闭环“算法-硬件”设计空间探索,寻找对密码友好且保持精度的神经网络架构。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Caiwen Ding其他文献
Ising-CF: A Pathbreaking Collaborative Filtering Method Through Efficient Ising Machine Learning
Ising-CF:通过高效 Ising 机器学习实现的开创性协同过滤方法
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Zhuo Liu;Yunan Yang;Zhenyu Pan;Anshujit Sharma;Amit Hasan;Caiwen Ding;Ang Li;Michael Huang;Tong Geng - 通讯作者:
Tong Geng
Learning Topics Using Semantic Locality
使用语义局部性学习主题
- DOI:
10.1109/icpr.2018.8546223 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Ziyi Zhao;Krittaphat Pugdeethosapol;Sheng Lin;Zhe Li;Caiwen Ding;Yanzhi Wang;Qinru Qiu - 通讯作者:
Qinru Qiu
FL-DISCO: Federated Generative Adversarial Network for Graph-based Molecule Drug Discovery: Special Session Paper
FL-DISCO:基于图的分子药物发现的联合生成对抗网络:特别会议论文
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Daniel Manu;Yi Sheng;Junhuan Yang;Jieren Deng;Tong Geng;Ang Li;Caiwen Ding;Weiwen Jiang;Lei Yang - 通讯作者:
Lei Yang
Reconfigurable thermoelectric generators for vehicle radiators energy harvesting
用于车辆散热器能量收集的可重构热电发电机
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Donkyu Baek;Caiwen Ding;Sheng Lin;Donghwa Shin;Jaemin Kim;X. Lin;Yanzhi Wang;N. Chang - 通讯作者:
N. Chang
Dynamic Sparse Training via Balancing the Exploration-Exploitation Trade-off
通过平衡探索-利用权衡进行动态稀疏训练
- DOI:
10.1109/dac56929.2023.10247716 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Shaoyi Huang;Bowen Lei;Dongkuan Xu;Hongwu Peng;Yue Sun;Mimi Xie;Caiwen Ding - 通讯作者:
Caiwen Ding
Caiwen Ding的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Caiwen Ding', 18)}}的其他基金
CAREER: Algorithm-Hardware Co-design of Efficient Large Graph Machine Learning for Electronic Design Automation
职业:用于电子设计自动化的高效大图机器学习的算法-硬件协同设计
- 批准号:
2340273 - 财政年份:2024
- 资助金额:
$ 39.98万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317232 - 财政年份:2024
- 资助金额:
$ 39.98万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330940 - 财政年份:2024
- 资助金额:
$ 39.98万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 39.98万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
- 批准号:
2317233 - 财政年份:2024
- 资助金额:
$ 39.98万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 39.98万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
- 批准号:
2330941 - 财政年份:2024
- 资助金额:
$ 39.98万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Towards Secure and Trustworthy Tree Models
协作研究:SaTC:核心:小型:迈向安全可信的树模型
- 批准号:
2413046 - 财政年份:2024
- 资助金额:
$ 39.98万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: EDU: Adversarial Malware Analysis - An Artificial Intelligence Driven Hands-On Curriculum for Next Generation Cyber Security Workforce
协作研究:SaTC:EDU:对抗性恶意软件分析 - 下一代网络安全劳动力的人工智能驱动实践课程
- 批准号:
2230609 - 财政年份:2023
- 资助金额:
$ 39.98万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: EDU: RoCCeM: Bringing Robotics, Cybersecurity and Computer Science to the Middled School Classroom
合作研究:SaTC:EDU:RoCCeM:将机器人、网络安全和计算机科学带入中学课堂
- 批准号:
2312057 - 财政年份:2023
- 资助金额:
$ 39.98万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Medium: Understanding the Impact of Privacy Interventions on the Online Publishing Ecosystem
协作研究:SaTC:核心:媒介:了解隐私干预对在线出版生态系统的影响
- 批准号:
2237329 - 财政年份:2023
- 资助金额:
$ 39.98万 - 项目类别:
Standard Grant