Coordinated Supervisory Control System for Smart Manufacturing

智能制造协调监控系统

基本信息

  • 批准号:
    1853454
  • 负责人:
  • 金额:
    $ 49.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-15 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

This project will support fundamental research in smart manufacturing processes and systems, promoting the progress of science as well as national prosperity. Recent advancements in sensors, information, communication, and robotics technologies have driven better ways of doing manufacturing. Modern manufacturing systems are equipped with multiple sensors, communication devices, and material handling robots that operate alongside other autonomous machines and human coworkers/supervisors. However, the full potential of these technological advances in improving production efficiency and quality has not been realized. This is because manufacturing systems are inherently stochastic and nonlinear, and there is a lack of theoretical and technical understanding of real-time model-based prediction of manufacturing performance and production control. This research will establish novel data-enabled models for predicting manufacturing system performance under uncertainty and adaptive, robust, and scalable control and coordination algorithms for production control. The new knowledge will provide manufacturers with a rigorous quantitative tool for real-time monitoring and control of the complex manufacturing systems. The results of this research will contribute to both the theory and the practice of smart manufacturing and will be very useful to the entire U.S. manufacturing sector for maximizing productivity and economic benefit. This research incorporates goals with industrial needs, helps broaden the participation of underrepresented groups in research, and enhances engineering education. This research will fill the knowledge gap via the integrated study of production dynamics and multiple robots material dispatching decisions to address their interactions in real-time, which is significant for manufacturing systems efficiency. The research approach will be a novel combination of dynamic systems modeling of material flow through production processes along with dynamic multirobot task assignment under uncertainty for optimizing production performance metrics. The research team aims to: a) establish a data-enabled mathematical framework to describe real-time manufacturing systems with dynamic production and multirobot operations to enhance the understanding of dynamic manufacturing processes and systems; and b) establish the scientific and technological foundation in adaptive control and decentralized decision making for multirobot system working with machines/humans. The Coordinated Supervisory Control System is based on the holistic view of physical system analysis, advanced data-driven modeling, and adaptive control. The methodology is transformable to other dynamic systems with distributed sensors and data, such as transportation, supply chain, and health care management.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将支持智能制造工艺和系统的基础研究,促进科学进步和国家繁荣。最近传感器、信息、通信和机器人技术的进步推动了更好的制造方式。现代制造系统配备了多个传感器、通信设备和物料搬运机器人,这些机器人与其他自主机器和人类同事/主管一起操作。然而,这些技术进步在提高生产效率和质量方面的潜力尚未充分发挥出来。这是因为制造系统本质上是随机和非线性的,并且缺乏对基于实时模型的制造性能预测和生产控制的理论和技术理解。本研究将建立新的数据支持模型,用于预测不确定性下的制造系统性能,以及用于生产控制的自适应、鲁棒和可扩展控制和协调算法。新知识将为制造商提供严格的定量工具,用于实时监测和控制复杂的制造系统。本研究的结果将对智能制造的理论和实践做出贡献,并将对整个美国制造业的生产力和经济效益最大化非常有用。这项研究将目标与工业需求结合起来,有助于扩大代表性不足的群体在研究中的参与,并加强工程教育。本研究将通过对生产动力学和多机器人材料调度决策的集成研究来填补知识空白,以解决它们之间的实时交互,这对制造系统的效率具有重要意义。研究方法将是生产过程中物料流动的动态系统建模与不确定性下动态多机器人任务分配的新组合,以优化生产绩效指标。研究团队的目标是:a)建立一个数据支持的数学框架来描述具有动态生产和多机器人操作的实时制造系统,以增强对动态制造过程和系统的理解;b)为机器/人协同工作的多机器人系统的自适应控制和分散决策建立科学技术基础。协调监控系统基于物理系统分析的整体视图,先进的数据驱动建模和自适应控制。该方法可转换为具有分布式传感器和数据的其他动态系统,例如运输,供应链和医疗保健管理。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Integrated process-system modelling and control through graph neural network and reinforcement learning
通过图神经网络和强化学习集成过程系统建模和控制
  • DOI:
    10.1016/j.cirp.2021.04.056
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Huang, Jing;Zhang, Jianjing;Chang, Qing;Gao, Robert X.
  • 通讯作者:
    Gao, Robert X.
Dynamic modeling and analysis of multi-product flexible production line
Hybrid feedback and reinforcement learning-based control of machine cycle time for a multi-stage production system
  • DOI:
    10.1016/j.jmsy.2022.09.020
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    12.1
  • 作者:
    Chen Li;Qing Chang
  • 通讯作者:
    Chen Li;Qing Chang
Integrated Process-System Modeling and Performance Analysis for Serial Production Lines
  • DOI:
    10.1109/lra.2022.3181741
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    Chen Li;Q. Chang;G. Xiao;J. Arinez
  • 通讯作者:
    Chen Li;Q. Chang;G. Xiao;J. Arinez
User-guided motion planning with reinforcement learning for human-robot collaboration in smart manufacturing
智能制造中人机协作的用户引导运动规划和强化学习
  • DOI:
    10.1016/j.eswa.2022.118291
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    8.5
  • 作者:
    Yu, Tian;Chang, Qing
  • 通讯作者:
    Chang, Qing
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Qing Chang其他文献

Host-guest interaction between brazilin and hydroxypropyl-β-cyclodextrin: Preparation, inclusion mode, molecular modelling and characterization
巴西林和羟丙基-β-环糊精之间的主客体相互作用:制备、包合模式、分子建模和表征
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Li-Juan Yang;Qing Chang;Shu-Ya Zhou;Yun-Han Yang;Fu-Ting Xia;Wen Chen;Minyan Li;Xiao-Dong Yang
  • 通讯作者:
    Xiao-Dong Yang
RSKD: Enhanced medical image segmentation via multi-layer, rank-sensitive knowledge distillation in Vision Transformer models
RSKD:通过 Vision Transformer 模型中的多层、等级敏感的知识蒸馏增强医学图像分割
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    8.8
  • 作者:
    Pengchen Liang;Jianguo Chen;Qing Chang;Lei Yao
  • 通讯作者:
    Lei Yao
Adsorption of cations at the illite–water interface and its effect on intrinsic potassium ions
伊利石-水界面阳离子的吸附及其对固有钾离子的影响
  • DOI:
    10.1111/ejss.13155
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Xiong Li;Yuhang Xing;Luobin Tang;Na Liu;Qing Chang;Jianguo Zhang
  • 通讯作者:
    Jianguo Zhang
Effect of the linkages on the self-assembly and photophysical properties of 4,7-diphenyl-2,1,3-benzothiadiazole-based luminescent polycatenars
连接对4,7-二苯基1-2,1,3-苯并噻二唑基发光聚链烯自组装和光物理性质的影响
  • DOI:
    10.1016/j.molliq.2019.04.121
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Jinliang Hu;Yulong Xiao;Qing Chang;Hongfei Gao;Xiaohong Cheng
  • 通讯作者:
    Xiaohong Cheng
Fiber spectrum analyzer based on planar waveguide array aligned to a camera without lens
基于与无镜头相机对准的平面波导阵列的光纤频谱分析仪
  • DOI:
    10.1016/j.optlaseng.2022.107226
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Xinhong Jiang;Zhifang Yang;Lin Wu;Zhangqi Dang;Zhenming Ding;Zexu Liu;Qing Chang;Ziyang Zhang
  • 通讯作者:
    Ziyang Zhang

Qing Chang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Qing Chang', 18)}}的其他基金

Collaborative Research: An Integrated Approach to Modeling, Decision-Making and Control for Energy Efficient Manufacturing
协作研究:节能制造建模、决策和控制的综合方法
  • 批准号:
    2243930
  • 财政年份:
    2023
  • 资助金额:
    $ 49.94万
  • 项目类别:
    Standard Grant
CAREER: Collaborative Modeling for Distributed Sensing and Real-time Intelligent Control to Improve Battery Manufacturing Productivity and Efficiency
职业:分布式传感和实时智能控制的协作建模,以提高电池制造生产力和效率
  • 批准号:
    1935728
  • 财政年份:
    2018
  • 资助金额:
    $ 49.94万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Fundamental Study of Impacts of Manufacturing Processes and Automation on Material Properties of Composite Products
GOALI/合作研究:制造工艺和自动化对复合材料产品材料性能影响的基础研究
  • 批准号:
    1435534
  • 财政年份:
    2014
  • 资助金额:
    $ 49.94万
  • 项目类别:
    Standard Grant
CAREER: Collaborative Modeling for Distributed Sensing and Real-time Intelligent Control to Improve Battery Manufacturing Productivity and Efficiency
职业:分布式传感和实时智能控制的协作建模,以提高电池制造生产力和效率
  • 批准号:
    1351160
  • 财政年份:
    2014
  • 资助金额:
    $ 49.94万
  • 项目类别:
    Standard Grant

相似海外基金

CAP: AI-Assisted Supervisory Control of Wind Farm Connection to the Grid for Stability Monitoring
CAP:人工智能辅助风电场并网监控以进行稳定性监测
  • 批准号:
    2334256
  • 财政年份:
    2024
  • 资助金额:
    $ 49.94万
  • 项目类别:
    Standard Grant
Collaborative Research: Cyber-secure and Resilient Supervisory Control of Networked Discrete-Event Systems
合作研究:网络离散事件系统的网络安全和弹性监督控制
  • 批准号:
    2146615
  • 财政年份:
    2022
  • 资助金额:
    $ 49.94万
  • 项目类别:
    Standard Grant
Collaborative Research: Cyber-secure and Resilient Supervisory Control of Networked Discrete-Event Systems
合作研究:网络离散事件系统的网络安全和弹性监督控制
  • 批准号:
    2144416
  • 财政年份:
    2022
  • 资助金额:
    $ 49.94万
  • 项目类别:
    Standard Grant
Supervisory Control of Timed Discrete Event Systems Based on Bisimulation
基于互仿真的定时离散事件系统监控
  • 批准号:
    22K04167
  • 财政年份:
    2022
  • 资助金额:
    $ 49.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Supervisory Control of Microgrids for Electric Vehicle Charging Applications
电动汽车充电应用微电网的监控
  • 批准号:
    547452-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 49.94万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Supervisory Control and Regulation of Discrete Dynamical Systems
离散动力系统的监督控制和调节
  • 批准号:
    RGPIN-2016-03626
  • 财政年份:
    2021
  • 资助金额:
    $ 49.94万
  • 项目类别:
    Discovery Grants Program - Individual
Security Architecture for Supervisory Control and Data Acquisition (SCADA) Networks
监控和数据采集 (SCADA) 网络的安全架构
  • 批准号:
    533183-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 49.94万
  • 项目类别:
    Collaborative Research and Development Grants
Supervisory Control of Microgrids for Electric Vehicle Charging Applications
电动汽车充电应用微电网的监控
  • 批准号:
    547452-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 49.94万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Supervisory Control and Regulation of Discrete Dynamical Systems
离散动力系统的监督控制和调节
  • 批准号:
    RGPIN-2016-03626
  • 财政年份:
    2020
  • 资助金额:
    $ 49.94万
  • 项目类别:
    Discovery Grants Program - Individual
Security Architecture for Supervisory Control and Data Acquisition (SCADA) Networks
监控和数据采集 (SCADA) 网络的安全架构
  • 批准号:
    533183-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 49.94万
  • 项目类别:
    Collaborative Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了