Collaborative Research: An Integrated Approach to Modeling, Decision-Making and Control for Energy Efficient Manufacturing
协作研究:节能制造建模、决策和控制的综合方法
基本信息
- 批准号:2243930
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project will support fundamental research focused on improving energy efficiency and promoting a healthy indoor environment in the manufacturing industry. To achieve the United States' aggressive decarbonization goal, a significant transformation in demand-side energy management is needed alongside the current energy generation mix. In typical manufacturing facilities, the most significant sources of energy consumption are the manufacturing systems and the environmental control systems, such as heating, ventilation, and air-conditioning. These two systems are closely interconnected in terms of production operations, dynamic energy demand/consumption, and indoor conditions. However, the current control strategy for manufacturing systems lacks effective integration with facility energy management and indoor environmental control, hindering overall efficiency improvements. This grant supports multi-disciplinary research to establish a comprehensive understanding of energy efficiency in smart manufacturing facilities to reduce energy waste, enhance overall manufacturing efficiency, lower manufacturing costs, and promote the well-being of industry workers. The outcomes of this research will yield long-term benefits for the environment, society, and the U.S. energy landscape. Moreover, this research aligns with industrial needs, fosters diversity, encourages the involvement of underrepresented groups in research, and contributes to the advancement of engineering education.This research endeavors to develop innovative technologies for integrated modeling of complex systems, multi-agent decision-making, and distributed control. The research team aims to construct dynamic models of manufacturing systems and environmental control systems, gaining comprehensive insights into the dynamic interactions among various components of the manufacturing facility. Furthermore, an integrated factory energy model will be established using a graph neural network, bridging the gap between traditionally separate management of environmental control and manufacturing systems. Additionally, a hierarchical control framework will be designed to integrate supervisory decision-making and adaptive control schemes, considering both production operations and facility energy management. The team will develop a multi-agent reinforcement learning algorithm to support online decision-making for the complex system described by the graph neural network. Data-driven adaptive control algorithms will be employed to handle system uncertainties and ambient disturbances using a learning-based approach. This fundamental research has the potential to overcome the limitations of traditional steady-state analysis applied to separate manufacturing systems and environmental control, elevating energy and production efficiency to new levels. Furthermore, the generic nature of the methods will contribute to the broader field of engineering system modeling and control.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将支持基础研究,重点是提高能源效率和促进制造业健康的室内环境。为了实现美国积极的脱碳目标,除了当前的能源发电组合外,还需要对需求侧能源管理进行重大转型。在典型的制造设施中,最重要的能源消耗来源是制造系统和环境控制系统,如加热,通风和空调。这两个系统在生产操作、动态能源需求/消耗和室内条件方面紧密相连。然而,目前的制造系统控制策略缺乏与设施能源管理和室内环境控制的有效整合,阻碍了整体效率的提高。该补助金支持多学科研究,以全面了解智能制造设施的能源效率,减少能源浪费,提高整体制造效率,降低制造成本,并促进行业工人的福祉。这项研究的成果将为环境、社会和美国能源格局带来长期利益。此外,本研究符合工业需求,促进多样性,鼓励参与研究的代表性不足的群体,并有助于工程教育的进步。本研究致力于开发复杂系统的集成建模,多智能体决策和分布式控制的创新技术。该研究团队旨在构建制造系统和环境控制系统的动态模型,全面了解制造设施各组件之间的动态相互作用。此外,一个集成的工厂能源模型将建立使用图形神经网络,弥合差距之间的传统分离管理的环境控制和制造系统。此外,将设计一个分层控制框架,以整合监督决策和自适应控制方案,同时考虑生产操作和设施能源管理。该团队将开发一种多智能体强化学习算法,以支持图形神经网络描述的复杂系统的在线决策。数据驱动的自适应控制算法将被用来处理系统的不确定性和环境干扰使用学习为基础的方法。这项基础研究有可能克服传统稳态分析应用于单独制造系统和环境控制的局限性,将能源和生产效率提升到新的水平。此外,该方法的通用性将有助于更广泛的工程系统建模和控制领域。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qing Chang其他文献
Host-guest interaction between brazilin and hydroxypropyl-β-cyclodextrin: Preparation, inclusion mode, molecular modelling and characterization
巴西林和羟丙基-β-环糊精之间的主客体相互作用:制备、包合模式、分子建模和表征
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:4.5
- 作者:
Li-Juan Yang;Qing Chang;Shu-Ya Zhou;Yun-Han Yang;Fu-Ting Xia;Wen Chen;Minyan Li;Xiao-Dong Yang - 通讯作者:
Xiao-Dong Yang
RSKD: Enhanced medical image segmentation via multi-layer, rank-sensitive knowledge distillation in Vision Transformer models
RSKD:通过 Vision Transformer 模型中的多层、等级敏感的知识蒸馏增强医学图像分割
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:8.8
- 作者:
Pengchen Liang;Jianguo Chen;Qing Chang;Lei Yao - 通讯作者:
Lei Yao
Adsorption of cations at the illite–water interface and its effect on intrinsic potassium ions
伊利石-水界面阳离子的吸附及其对固有钾离子的影响
- DOI:
10.1111/ejss.13155 - 发表时间:
2021-07 - 期刊:
- 影响因子:4.2
- 作者:
Xiong Li;Yuhang Xing;Luobin Tang;Na Liu;Qing Chang;Jianguo Zhang - 通讯作者:
Jianguo Zhang
Effect of the linkages on the self-assembly and photophysical properties of 4,7-diphenyl-2,1,3-benzothiadiazole-based luminescent polycatenars
连接对4,7-二苯基1-2,1,3-苯并噻二唑基发光聚链烯自组装和光物理性质的影响
- DOI:
10.1016/j.molliq.2019.04.121 - 发表时间:
2019-07 - 期刊:
- 影响因子:6
- 作者:
Jinliang Hu;Yulong Xiao;Qing Chang;Hongfei Gao;Xiaohong Cheng - 通讯作者:
Xiaohong Cheng
Fiber spectrum analyzer based on planar waveguide array aligned to a camera without lens
基于与无镜头相机对准的平面波导阵列的光纤频谱分析仪
- DOI:
10.1016/j.optlaseng.2022.107226 - 发表时间:
2022-05 - 期刊:
- 影响因子:4.6
- 作者:
Xinhong Jiang;Zhifang Yang;Lin Wu;Zhangqi Dang;Zhenming Ding;Zexu Liu;Qing Chang;Ziyang Zhang - 通讯作者:
Ziyang Zhang
Qing Chang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qing Chang', 18)}}的其他基金
Coordinated Supervisory Control System for Smart Manufacturing
智能制造协调监控系统
- 批准号:
1853454 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Collaborative Modeling for Distributed Sensing and Real-time Intelligent Control to Improve Battery Manufacturing Productivity and Efficiency
职业:分布式传感和实时智能控制的协作建模,以提高电池制造生产力和效率
- 批准号:
1935728 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Fundamental Study of Impacts of Manufacturing Processes and Automation on Material Properties of Composite Products
GOALI/合作研究:制造工艺和自动化对复合材料产品材料性能影响的基础研究
- 批准号:
1435534 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Collaborative Modeling for Distributed Sensing and Real-time Intelligent Control to Improve Battery Manufacturing Productivity and Efficiency
职业:分布式传感和实时智能控制的协作建模,以提高电池制造生产力和效率
- 批准号:
1351160 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
- 批准号:
2409395 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331294 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331710 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: An Integrated Framework for Learning-Enabled and Communication-Aware Hierarchical Distributed Optimization
协作研究:支持学习和通信感知的分层分布式优化的集成框架
- 批准号:
2331711 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT-SAT: INtegrated Testbed Ensuring Resilient Active/Passive CoexisTence (INTERACT): End-to-End Learning-Based Interference Mitigation for Radiometers
合作研究:SWIFT-SAT:确保弹性主动/被动共存的集成测试台 (INTERACT):基于端到端学习的辐射计干扰缓解
- 批准号:
2332661 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: NSF-AoF: CIF: Small: AI-assisted Waveform and Beamforming Design for Integrated Sensing and Communication
合作研究:NSF-AoF:CIF:小型:用于集成传感和通信的人工智能辅助波形和波束成形设计
- 批准号:
2326622 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331295 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Extreme Mechanics of the Human Brain via Integrated In Vivo and Ex Vivo Mechanical Experiments
合作研究:通过体内和离体综合力学实验研究人脑的极限力学
- 批准号:
2331296 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT-SAT: INtegrated Testbed Ensuring Resilient Active/Passive CoexisTence (INTERACT): End-to-End Learning-Based Interference Mitigation for Radiometers
合作研究:SWIFT-SAT:确保弹性主动/被动共存的集成测试台 (INTERACT):基于端到端学习的辐射计干扰缓解
- 批准号:
2332662 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: Integrated Materials-Manufacturing-Controls Framework for Efficient and Resilient Manufacturing Systems
协作研究:高效、弹性制造系统的集成材料制造控制框架
- 批准号:
2346650 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant