Collaborative Research: Population Dynamics in Random Environments: Theory and Approximation

合作研究:随机环境中的种群动态:理论与近似

基本信息

  • 批准号:
    1853463
  • 负责人:
  • 金额:
    $ 14.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2021-12-31
  • 项目状态:
    已结题

项目摘要

This project will formulate and analyze a general mathematical framework to facilitate understanding the persistence and extinction of species affected by random environmental fluctuations. Global climate change models predict increasing temporal variability in temperature, precipitation and storms in the next century. Random environmental fluctuations have been shown to drive populations extinct, promote persistence, change genetic diversity, and modify the spread of infectious diseases. It is therefore urgent to develop tools for understanding the effects of random temporal fluctuations in environmental conditions on species. The PIs will develop mathematical theory, in conjunction with analytical and numerical approximation methods, to help theoretical ecologists pinpoint how environmental fluctuations affect the long-term dynamics of ecological communities. In collaboration with the Gore lab at Massachusetts Institute of Technology the PIs will test theoretical results by comparison with microbial ecology experiments. The investigators plan to involve high school and undergraduate students in projects allowing them to develop programming skills and diversify their mathematical and ecological knowledge. For outreach, the investigators will organize seminars and conferences and promote the participation of women and members of traditionally underrepresented minorities within the sciences.The PIs will investigate continuous and discrete time models of interacting populations that experience random temporal environmental variations. In the continuous time setting the research will focus on Piecewise Deterministic Markov Processes - processes that switch between different systems of ordinary differential equations at random times. In the discrete time setting stochastic difference equations will be analyzed. New methods for checking when species persist and converge to their invariant probability measures (which describe the 'random equilibria' of subcommunities of species) will be developed, and conditions under which species go extinct exponentially fast determined. Since all theoretical models are merely approximations of natural systems, the PIs will study how the persistence/extinction results change under small, density-dependent, perturbations of the model parameters. The extinction/persistence criteria will involve Lyapunov exponents, which usually cannot be computed explicitly. In order to resolve this issue analytical and numerical approximation methods for estimating the Lyapunov exponents will be developed. Finally, together with the Gore lab at Massachusetts Institute of Technology, the PIs will run experiments in order to see how analytical results qualitatively compare with multi-species microbial systems under environmental fluctuations. This project is jointly funded by the Division of Mathematical Sciences Mathematical Biology Program the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将制定和分析一个通用的数学框架,以促进理解受随机环境波动影响的物种的持久性和灭绝。全球气候变化模型预测,在下一个世纪,气温、降水和风暴的时间变异性将增加。随机的环境波动已被证明会导致种群灭绝,促进持久性,改变遗传多样性,并改变传染病的传播。因此,迫切需要开发工具来了解环境条件随机时间波动对物种的影响。PI将开发数学理论,结合分析和数值逼近方法,以帮助理论生态学家确定环境波动如何影响生态群落的长期动态。在与马萨诸塞州理工学院的戈尔实验室的合作中,PI将通过与微生物生态学实验的比较来测试理论结果。研究人员计划让高中生和本科生参与项目,使他们能够发展编程技能,并使他们的数学和生态知识多样化。为了推广,研究人员将组织研讨会和会议,并促进妇女和传统上代表性不足的少数民族成员在科学领域的参与。PI将调查连续和离散时间模型的相互作用的人口,经历随机的时间环境变化。在连续时间设置的研究将集中在分段确定性马尔可夫过程-过程之间切换不同系统的常微分方程在随机时间。在离散时间设置随机差分方程将被分析。新的方法检查物种持续和收敛到其不变的概率措施(描述的“随机平衡”的亚群落的物种)将被开发,和条件下,物种灭绝指数快速确定。 由于所有的理论模型仅仅是自然系统的近似,PI将研究持续性/灭绝结果如何在模型参数的小的、密度相关的扰动下变化。灭绝/持久性标准将涉及李雅普诺夫指数,这通常不能显式计算。为了解决这个问题,分析和数值近似方法估计的李雅普诺夫指数将开发。最后,PI将与马萨诸塞州理工学院的戈尔实验室一起进行实验,以了解在环境波动下,分析结果如何与多物种微生物系统进行定性比较。该项目由数学科学部数学生物学计划促进竞争性研究的既定计划(EPSCoR)共同资助。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Inverse First Passage Time Problem for killed Brownian motion
灭活布朗运动的逆首次通过时间问题
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ettinger, Boris;Hening, Alexandru;Wong, Tak Kwong
  • 通讯作者:
    Wong, Tak Kwong
On a Predator-Prey System with Random Switching that Never Converges to its Equilibrium
关于随机切换且永远不会收敛到平衡的捕食者-被捕食者系统
Coexistence, Extinction, and Optimal Harvesting in Discrete-Time Stochastic Population Models
离散时间随机种群模型中的共存、灭绝和最优收获
  • DOI:
    10.1007/s00332-020-09667-0
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Hening, Alexandru
  • 通讯作者:
    Hening, Alexandru
Harvesting and seeding of stochastic populations: analysis and numerical approximation
随机种群的收获和播种:分析和数值近似
  • DOI:
    10.1007/s00285-020-01502-0
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Hening, Alexandru;Tran, Ky Quan
  • 通讯作者:
    Tran, Ky Quan
The competitive exclusion principle in stochastic environments
  • DOI:
    10.1007/s00285-019-01464-y
  • 发表时间:
    2018-10
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Alexandru Hening;D. Nguyen
  • 通讯作者:
    Alexandru Hening;D. Nguyen
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexandru Hening其他文献

Transient one-dimensional diffusions conditioned to converge to a different limit point
瞬态一维扩散条件收敛到不同的极限点
  • DOI:
    10.1016/j.spl.2015.12.011
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alexandru Hening
  • 通讯作者:
    Alexandru Hening
Nonexistence of Markovian time dynamics for graphical models of correlated default
  • DOI:
    10.1007/s11134-011-9261-y
  • 发表时间:
    2011-09-28
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Steven N. Evans;Alexandru Hening
  • 通讯作者:
    Alexandru Hening

Alexandru Hening的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexandru Hening', 18)}}的其他基金

CAREER: Dynamics and harvesting of stochastic populations
职业:随机群体的动态和收获
  • 批准号:
    2339000
  • 财政年份:
    2024
  • 资助金额:
    $ 14.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: Population Dynamics in Random Environments: Theory and Approximation
合作研究:随机环境中的种群动态:理论与近似
  • 批准号:
    2147903
  • 财政年份:
    2021
  • 资助金额:
    $ 14.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: NSFGEO-NERC: Using population genetic models to resolve and predict dispersal kernels of marine larvae
合作研究:NSFGEO-NERC:利用群体遗传模型解析和预测海洋幼虫的扩散内核
  • 批准号:
    2334798
  • 财政年份:
    2024
  • 资助金额:
    $ 14.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SG: Effects of altered pollination environments on plant population dynamics in a stochastic world
合作研究:SG:随机世界中授粉环境改变对植物种群动态的影响
  • 批准号:
    2337427
  • 财政年份:
    2024
  • 资助金额:
    $ 14.5万
  • 项目类别:
    Standard Grant
Collaborative Research: NSFGEO-NERC: Using population genetic models to resolve and predict dispersal kernels of marine larvae
合作研究:NSFGEO-NERC:利用群体遗传模型解析和预测海洋幼虫的扩散内核
  • 批准号:
    2334797
  • 财政年份:
    2024
  • 资助金额:
    $ 14.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SG: Effects of altered pollination environments on plant population dynamics in a stochastic world
合作研究:SG:随机世界中授粉环境改变对植物种群动态的影响
  • 批准号:
    2337426
  • 财政年份:
    2024
  • 资助金额:
    $ 14.5万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Topological methods for analyzing shifting patterns and population collapse
合作研究:RUI:分析变化模式和人口崩溃的拓扑方法
  • 批准号:
    2327892
  • 财政年份:
    2024
  • 资助金额:
    $ 14.5万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Topological methods for analyzing shifting patterns and population collapse
合作研究:RUI:分析变化模式和人口崩溃的拓扑方法
  • 批准号:
    2327893
  • 财政年份:
    2024
  • 资助金额:
    $ 14.5万
  • 项目类别:
    Standard Grant
Collaborative Research: BoCP-Implementation: BioFI- Biodiversity Forecasting Initiative to Understand Population, Community and Ecosystem Function Under Global Change
合作研究:BoCP-实施:BioFI-生物多样性预测倡议,以了解全球变化下的人口、社区和生态系统功能
  • 批准号:
    2416164
  • 财政年份:
    2023
  • 资助金额:
    $ 14.5万
  • 项目类别:
    Standard Grant
Collaborative Research: ORCC:RUI: Integrating evolutionary and migratory potential of Chamaecrista fasciculata into forecasts of range-wide population dynamics under climate change
合作研究:ORCC:RUI:将 Chamaecrista fasciculata 的进化和迁徙潜力纳入气候变化下范围内种群动态的预测中
  • 批准号:
    2220927
  • 财政年份:
    2023
  • 资助金额:
    $ 14.5万
  • 项目类别:
    Standard Grant
Collaborative Research: ORCC:RUI: Integrating evolutionary and migratory potential of Chamaecrista fasciculata into forecasts of range-wide population dynamics under climate change
合作研究:ORCC:RUI:将 Chamaecrista fasciculata 的进化和迁徙潜力纳入气候变化下范围内种群动态的预测中
  • 批准号:
    2220930
  • 财政年份:
    2023
  • 资助金额:
    $ 14.5万
  • 项目类别:
    Standard Grant
Collaborative Research: RUI: Life history strategies within a population depend on cellular and organismal traits that underlie differences in resource acquisition and allocation
合作研究:RUI:群体内的生活史策略取决于细胞和有机体特征,这些特征是资源获取和分配差异的基础
  • 批准号:
    2314380
  • 财政年份:
    2023
  • 资助金额:
    $ 14.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了