Additive Manufacturing of Load and Energy Absorbing Materials through an Integrated Experimental and Modelling Approach
通过综合实验和建模方法增材制造负载和能量吸收材料
基本信息
- 批准号:1853893
- 负责人:
- 金额:$ 60.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-15 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This multi-PI advanced manufacturing project aims to understand and explore phase transformation mechanisms of zirconia ceramic in copper and steel metal matrices. Zirconia can convert large mechanical strain into heat recoverably but this potential has not been explored for metal matrix composites. In addition, the project studies a new friction-based additive manufacturing process, MELD, with the goal of developing new energy- and stress-absorbing components. Multi-scale computer modeling of the corresponding materials created through MELD will be carried out. Simulation results will be compared with experimental data for improved understanding of microstructure evolution during the MELD manufacturing process and the component behaviors during infrastructure use. The integrated understanding from the experimental and modeling efforts is expected to bring in new capabilities for infrastructure improvement and repair. Because of its broad applicability, this manufacturing process can directly impact the ability of buildings, aircraft, and automobiles to withstand demanding loads, and therefore directly impacts the economic welfare and national security of the United States. The knowledge generated will be widely disseminated to the scientific community, to the general public, and to K-12 students. We will also enrich our current curricula by bringing the most relevant technical and societal issues to classrooms/labs. The PI/Co-PIs will lead extensive outreach efforts to increase the enrollment of females and minorities in STEM. Specific efforts include participation in summer camps that focus on underrepresented students, collaboration with a minority serving institution, and outreach activities through Science Museum of Western Virginia.This research will study a novel type of metal matrix composites by leveraging a unique stress and energy dissipation mechanism based on zirconia martensitic phase transformation. The fundamentals of a new and scalable additive manufacturing process--MELD will be investigated, and multi-scale and multi-physics simulations for enhanced microstructure-property understanding and prediction will be integrated. The theoretical work will be correlated with both in-situ and ex-situ microstructure characterization and property evaluation results. The research approaches are: 1) study stress/energy dissipation mechanisms in metal matrix composites to improve the resilience of structures at different length scales, 2) understand the influence of the composite synthesis and additive deposition variables, and develop fundamental understanding of the heat/mass flow processes during MELD in order to create new structures and enable new properties, 3) simulate mass and heat flows during MELD and predict microstructure-derived performance at multi-scales under cyclic loading and energy shock conditions, and 4) build quantitative relations between the stress/energy absorbing capabilities and zirconia-enhanced metal composite synthesis and MELD manufacturing. This project will provide detailed understanding to the unique and reversible phase transformation of zirconia in metal matrices, especially regarding its functions in energy and stress absorption. It will also offer fundamental knowledge in MELD, an exciting and scalable additive manufacturing process based on friction stir methods, and create near net shape and fully-dense metal matrix composites. The research will also advance multi-scale, multi-physics simulations of mass flow and heat flow during the MELD process and after the MELD process while providing insight into the structural behaviors of the MELD-enabled composites under complex loading conditions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个多PI先进制造项目旨在了解和探索氧化锆陶瓷在铜和钢金属基体中的相变机制。氧化锆可以将大的机械应变转化为可恢复的热,但这种潜力尚未被探索用于金属基复合材料。此外,该项目还研究了一种新的基于摩擦的增材制造工艺MELD,目标是开发新的能量和应力吸收部件。将对通过MELD创建的相应材料进行多尺度计算机建模。模拟结果将与实验数据进行比较,以更好地理解MELD制造过程中的微观结构演变和基础设施使用过程中的组件行为。从实验和建模工作的综合理解,预计将带来新的能力,为基础设施的改善和维修。由于其广泛的适用性,这种制造工艺可以直接影响建筑物,飞机和汽车承受苛刻负载的能力,因此直接影响美国的经济福利和国家安全。所产生的知识将广泛传播给科学界,公众和K-12学生。我们还将通过将最相关的技术和社会问题带到教室/实验室来丰富我们目前的课程。PI/Co-PI将领导广泛的外联工作,以增加STEM中女性和少数民族的入学率。具体的工作包括参加夏令营,重点是代表性不足的学生,与少数服务机构的合作,并通过西弗吉尼亚州的科学博物馆外展活动。这项研究将研究一种新型的金属基复合材料,利用一种独特的应力和能量耗散机制的基础上氧化锆马氏体相变。将研究一种新的可扩展的增材制造工艺-MELD的基本原理,并将集成多尺度和多物理模拟,以增强对微观结构-性能的理解和预测。理论工作将与原位和非原位微观结构表征和性能评价结果相关联。研究方法是:1)研究金属基复合材料中的应力/能量耗散机制,以提高不同长度尺度下结构的弹性,2)了解复合材料合成和添加剂沉积变量的影响,并对MELD期间的热/质量流过程进行基本了解,以创建新结构并实现新性能,3)模拟MELD期间的质量和热量流动,并预测在循环载荷和能量冲击条件下多尺度下的微观结构衍生性能,以及4)建立应力/能量吸收能力与氧化锆增强的金属复合材料合成和MELD制造之间的定量关系。该项目将提供详细的了解氧化锆在金属基体中的独特和可逆的相变,特别是关于其在能量和应力吸收方面的功能。它还将提供MELD的基础知识,这是一种基于摩擦搅拌方法的令人兴奋的可扩展增材制造工艺,并创造近净形和全致密金属基复合材料。该研究还将推进MELD过程中和MELD过程后的质量流和热流的多尺度、多物理场模拟,同时深入了解复杂载荷条件下MELD使能复合材料的结构行为。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Viewpoint: Tuning the Martensitic Transformation Mode in Shape Memory Ceramics via Mesostructure and Microstructure Design
- DOI:10.1007/s40830-023-00430-4
- 发表时间:2023-03
- 期刊:
- 影响因子:2.2
- 作者:Donald Erb;H. Rauch;Kendall P. Knight;Hang Z. Yu
- 通讯作者:Donald Erb;H. Rauch;Kendall P. Knight;Hang Z. Yu
Morphological and microstructural investigation of the non-planar interface formed in solid-state metal additive manufacturing by additive friction stir deposition
- DOI:10.1016/j.addma.2020.101293
- 发表时间:2020-10-01
- 期刊:
- 影响因子:11
- 作者:Perry, Mackenzie E. J.;Griffiths, R. Joey;Yu, Hang Z.
- 通讯作者:Yu, Hang Z.
Additive Manufacturing of Yttrium-Stabilized Tetragonal Zirconia: Progressive Wall Collapse, Martensitic Transformation, and Energy Dissipation in Micro-Honeycombs
- DOI:10.1016/j.addma.2022.102692
- 发表时间:2022-02
- 期刊:
- 影响因子:11
- 作者:H. Rauch;Huachen Cui;Kendall P. Knight;R. J. Griffiths;Jake K. Yoder;X. Zheng;Hang Z. Yu
- 通讯作者:H. Rauch;Huachen Cui;Kendall P. Knight;R. J. Griffiths;Jake K. Yoder;X. Zheng;Hang Z. Yu
Solid-state additive manufacturing of aluminum and copper using additive friction stir deposition: Process-microstructure linkages
- DOI:10.1016/j.mtla.2020.100967
- 发表时间:2021-03-01
- 期刊:
- 影响因子:3.4
- 作者:Griffiths, R. Joey;Garcia, David;Yu, Hang Z.
- 通讯作者:Yu, Hang Z.
Overcoming the convergence difficulty of cohesive zone models through a Newton-Raphson modification technique
- DOI:10.1016/j.engfracmech.2020.107046
- 发表时间:2019-11
- 期刊:
- 影响因子:5.4
- 作者:R. Sepasdar;Maryam Shakiba
- 通讯作者:R. Sepasdar;Maryam Shakiba
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kathy Lu其他文献
Colloidal dispersion and rheology study of nanoparticles
- DOI:
10.1007/s10853-006-0303-5 - 发表时间:
2006-09-01 - 期刊:
- 影响因子:3.900
- 作者:
Kathy Lu;Chris Kessler - 通讯作者:
Chris Kessler
Multiwall Carbon Nanotube and TiO2 Sol Assembly
多壁碳纳米管和TiO2溶胶组装
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Junmin Qian;Kathy Lu - 通讯作者:
Kathy Lu
Synthesis of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-derived and layered TiO<sub>2</sub> with NiO nanosheets as heterojunction composites and their gas-sensing properties
- DOI:
10.1016/j.snb.2024.136655 - 发表时间:
2025-01-01 - 期刊:
- 影响因子:
- 作者:
Jianhui Jia;Yang Bai;Jingzhong Zhao;Shujuan Li;Pengrong Ren;Kathy Lu - 通讯作者:
Kathy Lu
Nickel–boron nanolayer evolution on boron carbide particle surfaces during thermal treatment
- DOI:
10.1016/j.tsf.2009.02.123 - 发表时间:
2009-06-01 - 期刊:
- 影响因子:
- 作者:
Kathy Lu;Xiaojing Zhu - 通讯作者:
Xiaojing Zhu
54091 Biologic efficacy and reasons for discontinuation in a tertiary referral hidradenitis suppurativa clinic
- DOI:
10.1016/j.jaad.2024.07.108 - 发表时间:
2024-09-01 - 期刊:
- 影响因子:
- 作者:
Albert Young;Kathy Lu;Andrea Dai;Dheeraj Kagithala;Eglal Samir;Mark Gregory;Madison Romanski;Peter Dimitrion;Iltefat Hamzavi;Qing-Sheng Mi - 通讯作者:
Qing-Sheng Mi
Kathy Lu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kathy Lu', 18)}}的其他基金
ISS: Synthesis of Electrically Conductive High-Temperature Composites Under Microgravity and Normal Gravity Conditions
ISS:微重力和正常重力条件下导电高温复合材料的合成
- 批准号:
2422018 - 财政年份:2023
- 资助金额:
$ 60.42万 - 项目类别:
Standard Grant
ISS: Synthesis of Electrically Conductive High-Temperature Composites Under Microgravity and Normal Gravity Conditions
ISS:微重力和正常重力条件下导电高温复合材料的合成
- 批准号:
2024546 - 财政年份:2020
- 资助金额:
$ 60.42万 - 项目类别:
Standard Grant
Lithographic Patterning of Co-Dispersed Nanomaterials for Device Applications
用于设备应用的共分散纳米材料的光刻图案
- 批准号:
1661564 - 财政年份:2017
- 资助金额:
$ 60.42万 - 项目类别:
Standard Grant
Collaborative Research: Integrated Design of Ultrahigh Surface Area Conductive Materials
合作研究:超高比表面积导电材料集成设计
- 批准号:
1634325 - 财政年份:2016
- 资助金额:
$ 60.42万 - 项目类别:
Standard Grant
Multi-Scale Study of Nanoparticle Sintering
纳米颗粒烧结的多尺度研究
- 批准号:
0969888 - 财政年份:2010
- 资助金额:
$ 60.42万 - 项目类别:
Standard Grant
Template-Assisted Nanoparticle Processing
模板辅助纳米颗粒加工
- 批准号:
0824741 - 财政年份:2008
- 资助金额:
$ 60.42万 - 项目类别:
Standard Grant
GOALI: Nanodesign and Efficient Processing of Boron Carbide Nanocomposites
目标:碳化硼纳米复合材料的纳米设计和高效加工
- 批准号:
0620621 - 财政年份:2006
- 资助金额:
$ 60.42万 - 项目类别:
Standard Grant
相似海外基金
Transitioning to High Scrap steel Manufacturing
过渡到高废钢制造
- 批准号:
2749036 - 财政年份:2026
- 资助金额:
$ 60.42万 - 项目类别:
Studentship
Design of metal structures of custom composition using additive manufacturing
使用增材制造设计定制成分的金属结构
- 批准号:
2593424 - 财政年份:2025
- 资助金额:
$ 60.42万 - 项目类别:
Studentship
Automating a novel multi-tool additive and subtractive manufacturing platform for micrometre-resolution prototyping across diverse industries
自动化新型多工具增材和减材制造平台,用于跨不同行业的微米分辨率原型制作
- 批准号:
10097846 - 财政年份:2024
- 资助金额:
$ 60.42万 - 项目类别:
Collaborative R&D
Cranfield University and Nissan Motor Manufacturing UK Ltd KTP 23_24 R1
克兰菲尔德大学和日产汽车制造英国有限公司 KTP 23_24 R1
- 批准号:
10069765 - 财政年份:2024
- 资助金额:
$ 60.42万 - 项目类别:
Knowledge Transfer Partnership
Powder Manufacturing Facility for Additive Manufacturing
用于增材制造的粉末制造设施
- 批准号:
LE240100120 - 财政年份:2024
- 资助金额:
$ 60.42万 - 项目类别:
Linkage Infrastructure, Equipment and Facilities
Micro-manufacturing of tissue patterned organ-chips for accelerated deployment of new medicines (Patterned OrganChips)
用于加速新药部署的组织图案化器官芯片的微制造(图案化器官芯片)
- 批准号:
EP/Z531261/1 - 财政年份:2024
- 资助金额:
$ 60.42万 - 项目类别:
Research Grant
Freeform Silica Fibre Optics via Ultrafast Laser Manufacturing
通过超快激光制造的自由形状石英光纤
- 批准号:
MR/X034615/1 - 财政年份:2024
- 资助金额:
$ 60.42万 - 项目类别:
Fellowship
NSF Engines Development Award: Utilizing space research, development and manufacturing to improve the human condition (OH)
NSF 发动机发展奖:利用太空研究、开发和制造来改善人类状况(OH)
- 批准号:
2314750 - 财政年份:2024
- 资助金额:
$ 60.42万 - 项目类别:
Cooperative Agreement
STTR Phase I: Innovating Micro-Light Emitting Diode (LED) Manufacturing with Novel Quantum Dot Micro-Patterning Technology
STTR 第一阶段:利用新型量子点微图案化技术创新微发光二极管 (LED) 制造
- 批准号:
2335283 - 财政年份:2024
- 资助金额:
$ 60.42万 - 项目类别:
Standard Grant
STTR Phase I: Semantically-Enabled Augmented Reality for Manufacturing
STTR 第一阶段:用于制造的语义增强现实
- 批准号:
2335533 - 财政年份:2024
- 资助金额:
$ 60.42万 - 项目类别:
Standard Grant














{{item.name}}会员




