IRES Track 1: Secure Crowdsensing for Improving Smart City Applications
IRES 轨道 1:用于改进智能城市应用的安全群体感知
基本信息
- 批准号:1853953
- 负责人:
- 金额:$ 29.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-15 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project will send 3 cohorts of 5 students per year for 10 weeks each to conduct research at the University of Bamberg, Germany. The University of Bamberg operates a Smart City Living Laboratory throughout the university and the city of Bamberg, Germany that is able to collect information such as noise levels, CO2 levels, and the number of people in a particular area from sensors throughout the city. Smart cities collect information and process it to help decision makers make better decisions with a fuller understanding of the complex interactions of people and services in a city. Some of the information comes from sources that are considered trustworthy such as CCTV cameras deployed by city workers; however, these trustworthy sources are often expensive to set up and maintain. Crowd sourcing the information provides a cheaper and often more efficient way of obtaining information; however, since people can lie or malicious software could lie on their behalf, this information is significantly less trustworthy. Our research examines the interactions between all of the entities in such a smart city environment and develops methods for utilizing crowd sourced information while protecting the city from malicious users and protects users from people who might spy on them through their data. Researchers will be implementing and testing their work in the Living Lab Bamberg in Germany to validate the effectiveness of our security systems. It is expected that this work will result in safer, more intelligent smart cities with the potential to improve energy efficiency, communication, transportation, and public health.This project will address several scientific challenges in the security and privacy of smart cities. The site at the University of Bamberg was chosen due to the smart city living laboratory that the university operates on both the campus and city. The researchers will address the following three scientific challenges: i) Utilization of data from untrusted sources is critical because many of the data sources in a smart city are the smart phones of users who can intentionally manipulate data or who might have malware on their phone that is strategically manipulating data. Students will build defense mechanisms using a combination of game theory and machine learning. ii) Privacy of users is critical to the adoption of crowd sensing for use in a smart city and to prevent the abuse of the system by users and administrators alike. Students will build privacy-enhancing technologies that use realistically generated cover traffic to obfuscate user data and cyber-physical correlation to enable privacy-preserving audits of the data collected by the city. iii) Secure incentives help to protect the deployers of tasks from malicious users that are seeking to optimize their gain without contributing to the system. To ensure that malicious users do not exploit the incentive system, students will create spatio-temporal models of context information that detect if a user was actually at the location at the time they reported they were when contributing information.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将每年派遣3个小组,每组5名学生,在德国的班贝格大学进行为期10周的研究。 班贝格大学在整个大学和德国的班贝格市运营着一个智能城市生活实验室,该实验室能够从整个城市的传感器收集特定区域的噪音水平、二氧化碳水平和人数等信息。 智慧城市收集信息并进行处理,以帮助决策者更全面地了解城市中人与服务的复杂互动,从而做出更好的决策。 一些信息来自被认为值得信赖的来源,如城市工作人员部署的闭路电视摄像机;然而,这些值得信赖的来源的设置和维护成本往往很高。 众包信息提供了一种更便宜、更有效的获取信息的方式;然而,由于人们可能会撒谎,或者恶意软件可能会代表他们撒谎,因此这些信息的可信度要低得多。 我们的研究考察了在这样一个智能城市环境中所有实体之间的相互作用,并开发了利用众包信息的方法,同时保护城市免受恶意用户的攻击,并保护用户免受可能通过其数据监视他们的人的攻击。 研究人员将在德国的生活实验室班贝格实施和测试他们的工作,以验证我们的安全系统的有效性。 预计这项工作将带来更安全,更智能的智慧城市,并有可能提高能源效率,通信,交通和公共卫生。该项目将解决智慧城市安全和隐私方面的几个科学挑战。选择班贝格大学的地点是因为该大学在校园和城市都运营着智能城市生活实验室。 研究人员将解决以下三个科学挑战:i)利用来自不可信来源的数据至关重要,因为智能城市中的许多数据源都是用户的智能手机,这些用户可以故意操纵数据,或者可能在他们的手机上安装恶意软件来策略性地操纵数据。 学生将使用博弈论和机器学习的结合来建立防御机制。用户的隐私对于在智慧城市中采用人群感知以及防止用户和管理员滥用系统至关重要。 学生将建立隐私增强技术,使用真实生成的覆盖流量来混淆用户数据和网络物理相关性,以便对城市收集的数据进行隐私保护审计。(三) 安全激励有助于保护任务的部署者免受恶意用户的攻击,这些恶意用户试图优化他们的收益而不对系统做出贡献。 为了确保恶意用户不利用奖励系统,学生将创建上下文信息的时空模型,以检测用户在贡献信息时是否确实在该位置。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brent Lagesse其他文献
You Had to Be There: Private Video Sharing for Mobile Phones using Fully Homomorphic Encryption
你必须在那里:使用全同态加密的手机私人视频共享
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Brent Lagesse;Gabriel Nguyen;Utsav Goswami;Kevin Wu - 通讯作者:
Kevin Wu
KeyGuard: Using Selective Encryption to Mitigate Keylogging in Third-Party IME
KeyGuard:使用选择性加密来减少第三方 IME 中的键盘记录
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
J. Wang;Brent Lagesse - 通讯作者:
Brent Lagesse
Limited Use Cryptographic Tokens in Securing Ephemeral Cloud Servers
有限使用加密令牌来保护临时云服务器
- DOI:
10.5220/0006208704470454 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Gautam Kumar;Brent Lagesse - 通讯作者:
Brent Lagesse
2020 IEEE International Conference on Pervasive Computing and Communications Workshops, PerCom Workshops 2020, Austin, TX, USA, March 23-27, 2020
2020 IEEE 国际普适计算和通信研讨会研讨会,PerCom Workshops 2020,美国德克萨斯州奥斯汀,2020 年 3 月 23-27 日
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Yuan Lai;Gonzalo J. Martinez;Stephen M. Mattingly;Shayan Mirjafari;Subigya Nepal;Andrew T Campbell;A. Dey;Aaron D. Striegel;Marco Jansen;Fatjon Seraj;Wei Wang;P. Havinga;Kaijie Zhang;Zhiwen Yu;Dong Zhang;Zhu Wang;Bin Guo;Julian Graf;Katrin Neubauer;Sebastian Fischer;Rudolf Hackenberg;Elliott Wen;Gerald Weber;Javier Rojo;Daniel Flores;J. García;J. M. Murillo;Javier Berrocal;Mingyu Hou;Tianyu Kang;Li Guo;Edison Thomaz;Beichen Yang;Min Sun;Xiaoyan Hong;Xiaoming Guo;P. Barsocchi;A. Crivello;Michele Girolami;Fabio Mavilia;Vivek Chandel;Shivam Singhal;Avik Ghose;Tetsushi Matsuda;Toru Inada;Susumu Ishihara;Luay Alawneh;Belal Mohsen;Mohammad Al;Ahmed S. Shatnawi;Mahmoud Al;N. B. Rabah;Eoin Brophy;W. Muehlhausen;A. Smeaton;Tomás E. Ward;S. Maskey;S. Badsha;Shamik Sengupta;Ibrahim Khalil;Stanisław Saganowski;Anna Dutkowiak;A. Dziadek;Maciej Dziezyc;Joanna Komoszynska;Weronika Michalska;Adam G. Polak;Michal Ujma;Przemysław Kazienko;Nurullah Karakoç;Anna Scaglione;Fatemeh Mirzaei;Jonathan Lam;Roberto Manduchi;R. K. Ramakrishnan;R. Gavas;Lalit Venkata Subramaninan Viraraghavan;Kumar Hissaria;Arpan Pal;P. Balamuralidhar;S. Ditton;Ali Tekeoglu;K. Bekiroglu;Seshadhri Srinivasan;E. Tonkin;Miquel Perello Nieto;Haixia Bi;Antonis Vafeas;Yuri Tani;M. Garcia;A. Konios;M. A. Mustafa;C. Nugent;G. Morrison;Noah Sieck;Cameron Calpin;Mohammad S. Almalag;M. M. Sandhu;Kai Geissdoerfer;Sara Khalifa;Raja Jurdak;Marius Portmann;Brano Kusy;Alwyn Burger;Chao Qian;Gregor Schiele;Domenik Helms;Peter Zdankin;Marian Waltereit;V. Matkovic;Torben Weis;Syafiq Al Atiiq;Christian Gehrmann;Jae Woong Lee;Sumi Helal;Mathias Mormul;Christoph Stach;L. Krupp;G. Bahle;Agnes Gruenerbl;P. Lukowicz;Nicholas Handaja;Brent Lagesse;Clémentine Gritti;Dennis Przytarski;Bernhard Mitschang;Yeongjun Jeon;Kukho Heo;Soon Ju Kang;Sandeep Biplav Srivastava;Singh Sandha;Vaskar Raychoudhury;Sukanya Randhawa;V. Kapoor;Anmol Agrawal;Young D. Kwon;Kirill A. Shatilov;Lik;Serkan Kumyol;Kit;Yui;Pan Hui;Brittany Lewis;Joshua Hebert;Krishna Venkatasubramanian;Matthew Provost;Kelly Charlebois;Kristina Yordanova;Albert Hein;T. Kirste;Lien;Jun;Wei;Casper Van Gheluwe;I. Šemanjski;Suzanne Hendrikse;S. Gautama;Furqan Jameel;Zheng Chang;Riku Jäntti;Sergio Laso;M. Linaje;Ikram Ullah;N. Meratnia;Steven M. Hernandez;Eyuphan Bulut;Amiah Gooding;Matthew Martin;Maxwell Minard;Smruthi Sandhanam;Travis Stanger;Yana Alexandrova;Ashfaq Khokhar;Goce Trajcevski;Utsav Goswami;Kevin Wang;Gabriel Nguyen;Federico Montori;L. Bedogni;Gianluca Iselli;L. Bononi;Saptaparni Kumar;Haochen Pan;Roger Wang;Lewis Tseng;K. Hirayama;S. Saiki;Masahide Nakamura;Kiyoshi Yasuda;Samy El;Ismail Arai;Ahmad Salman;B. B. Park;Yuya Sano;Yuito Sugata;Teruhiro Mizumoto;H. Suwa;K. Yasumoto;P. Kouris;Marietta Sionti;Chrysovalantis Korfitis;Stella Markantonatou;Naima Khan;Nirmalya Roy;D. Jaiswal;D. Chatterjee;Ramesh Kumar;Ana Cristina Franco;Da Silva;Pascal Hirmer;Jan Schneider;Seda Ulusal;Matheus Tavares;Tomokazu Matsui;Kosei Onishi;Shinya Misaki;Manato Fujimoto;Hayata Satake;Yuki Kobayashi;Ryotaro Tani;Hiroshi Shigeno;Avijoy Chakma;Abu Zaher;Md Faridee;M Sajjad Hossain;Cleo Forman;Pablo Thiel;Raymond Ptucha;Miguel Dominguez;Cecilia Ovesdotter Alm;S. Mozgai;Arno Hartholt;Albert Rizzo - 通讯作者:
Albert Rizzo
UBCA: A Utility Based Clustering Architecture For Peer-to-peer Networks
UBCA:基于实用程序的点对点网络集群架构
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Brent Lagesse - 通讯作者:
Brent Lagesse
Brent Lagesse的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brent Lagesse', 18)}}的其他基金
Collaborative Research: EAGER: SaTC-EDU: Artificial Intelligence-Enhanced Cybersecurity: Workforce Needs and Barriers to Learning
协作研究:EAGER:SaTC-EDU:人工智能增强的网络安全:劳动力需求和学习障碍
- 批准号:
2113954 - 财政年份:2021
- 资助金额:
$ 29.9万 - 项目类别:
Standard Grant
EDU: Enhancing Cybersecurity Education for Native Students Using Virtual Laboratories
EDU:利用虚拟实验室加强本土学生的网络安全教育
- 批准号:
1419313 - 财政年份:2014
- 资助金额:
$ 29.9万 - 项目类别:
Standard Grant
相似海外基金
MRI: Track 1 Acquisition of a 400 MHz NMR Spectrometer to Expand and Secure Solution NMR Spectroscopy at UConn with Facility Helium Stewardship
MRI:轨道 1 采购 400 MHz NMR 波谱仪,通过设施氦气管理来扩展和保护康涅狄格大学的 NMR 波谱解决方案
- 批准号:
2320586 - 财政年份:2023
- 资助金额:
$ 29.9万 - 项目类别:
Standard Grant
Collaborative Research: RII Track-2 FEC: STORM: Data-Driven Approaches for Secure Electric Grids in Communities Disproportionately Impacted by Climate Change
合作研究:RII Track-2 FEC:STORM:受气候变化影响较大的社区中安全电网的数据驱动方法
- 批准号:
2316400 - 财政年份:2023
- 资助金额:
$ 29.9万 - 项目类别:
Cooperative Agreement
Collaborative Research: RII Track-2 FEC: STORM: Data-Driven Approaches for Secure Electric Grids in Communities Disproportionately Impacted by Climate Change
合作研究:RII Track-2 FEC:STORM:受气候变化影响较大的社区中安全电网的数据驱动方法
- 批准号:
2316402 - 财政年份:2023
- 资助金额:
$ 29.9万 - 项目类别:
Cooperative Agreement
Collaborative Research: RII Track-2 FEC: STORM: Data-Driven Approaches for Secure Electric Grids in Communities Disproportionately Impacted by Climate Change
合作研究:RII Track-2 FEC:STORM:受气候变化影响较大的社区中安全电网的数据驱动方法
- 批准号:
2316401 - 财政年份:2023
- 资助金额:
$ 29.9万 - 项目类别:
Cooperative Agreement
FMitF: Track II: Bringing Verification-Aware Languages and Federated Authentication to Enable Secure Computing for Scientific Communities
FMITF:轨道 II:引入验证感知语言和联合身份验证,为科学界提供安全计算
- 批准号:
2319190 - 财政年份:2023
- 资助金额:
$ 29.9万 - 项目类别:
Standard Grant
Collaborative Research: RII Track-2 FEC: STORM: Data-Driven Approaches for Secure Electric Grids in Communities Disproportionately Impacted by Climate Change
合作研究:RII Track-2 FEC:STORM:受气候变化影响较大的社区中安全电网的数据驱动方法
- 批准号:
2316399 - 财政年份:2023
- 资助金额:
$ 29.9万 - 项目类别:
Cooperative Agreement
NSF Convergence Accelerator Track G: Autonomously Tunable Waveform-Agnostic Radio Adapter for Seamless and Secure Operation of DoD Devices Through Non-Cooperative 5G Networks
NSF 融合加速器轨道 G:自主可调波形无关无线电适配器,可通过非合作 5G 网络无缝、安全地操作国防部设备
- 批准号:
2226392 - 财政年份:2022
- 资助金额:
$ 29.9万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track G: Building Resilient and Secure 5G Systems (BRASS)
NSF 融合加速器轨道 G:构建弹性且安全的 5G 系统 (BRASS)
- 批准号:
2226555 - 财政年份:2022
- 资助金额:
$ 29.9万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track G: Privacy-preserving Intrusion-resilient Secure Multiparty-computation-based Overlay (PISMO) for Secure and Resilient Communication Through 5G
NSF 融合加速器轨道 G:隐私保护、抗入侵、基于安全多方计算的覆盖 (PISMO),通过 5G 实现安全和弹性通信
- 批准号:
2226457 - 财政年份:2022
- 资助金额:
$ 29.9万 - 项目类别:
Standard Grant
CIVIC-PG Track B: Economic Resiliency through Mechanism Design and Secure Computing: MainStreetPulse: An Early Warning Platform for Monitoring and Supporting Main Street Businesses
CIVIC-PG 轨道 B:通过机制设计和安全计算实现经济弹性:MainStreetPulse:用于监控和支持大街业务的预警平台
- 批准号:
2228610 - 财政年份:2022
- 资助金额:
$ 29.9万 - 项目类别:
Standard Grant