Problems Related to Fourier Restriction Estimates
与傅里叶限制估计相关的问题
基本信息
- 批准号:1854148
- 负责人:
- 金额:$ 13.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-21 至 2020-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project revolves around several fundamental questions in harmonic analysis, which is a field stemming from the study of Fourier series and Fourier transform and is closely connected with partial differential equations, number theory, geometric measure theory, and real life applications such as signal processing and compressed sensing. The Fourier transform decomposes a function of time into different frequency components, similarly to how a music chord can be expressed as the pitches of its constituent notes. Harmonic analysis studies how the time information and the frequency information interact with each other. A fundamental question (i.e. Fourier restriction problem) that has been studied for decades is how the geometry of the frequency support of the Fourier transform dictates the size of the original function in time. Various quantifications of such relations are referred to as Fourier restriction estimates and turn out to be extremely challenging to study. Even for the simplest geometric objects such as spheres and paraboloids, many questions are still wide open. Restriction estimates are interesting also due to their connection with many other problems, within or outside analysis. It is well known that restriction estimates can be applied to study the Kakeya conjecture (on the minimum area of a set containing a unit line segment in each direction), the existence and growth of solutions to Schrödinger and wave equations, and the number of solutions to Diophantine equations in number theory.This project studies several problems related to Fourier restriction estimates. First, the principal investigator intends to further the investigation of the Fourier restriction conjecture for the paraboloid and the cone via the polynomial method. This method explores the algebraic structure of the time-frequency decomposition of the function, and has shown to be extremely powerful in obtaining many state-of-the-art results in the theory. Second, the principal investigator proposes to continue the study of weighted restriction estimates (i.e. when the Lebesgue measure is replaced with a fractal measure) and apply them to estimate divergence sets of the Schrödinger or wave equations and to distance set problems (on how the size of a set dictates the size of its distance set). The major difficulty in this direction is the lack of a crucial tool (orthogonality) caused by the presence of the fractal measure. Here an interesting approach will attack the distance set problems directly by studying the behavior of the fractal measure. Last, the principal investigator wants to explore the role in restriction theory of a recently developed tool called sparse domination. This method, arising from singular integral theory, is a way to reduce the study of the original continuous, spread out operator to that of a class of much simpler dyadic, positive, local operators. This method has shown to be extremely useful in singular integral theory and has become a modern view of point in describing operators. The principal investigator plans to further the study of sparse bounds of operators related to restriction estimates and with a Kakeya nature, such as the Bochner-Riesz multipliers, singular integrals along manifolds, directional maximal operators, and multi-parameter singular integral operators.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目围绕谐波分析中的几个基本问题,谐波分析是源于傅立叶级数和傅立叶变换研究的一个领域,与偏微分方程,数论,几何测量理论以及信号处理和压缩传感等真实的应用密切相关。傅里叶变换将时间函数分解为不同的频率分量,类似于音乐和弦如何被表示为其组成音符的音高。谐波分析研究时间信息和频率信息如何相互作用。一个基本的问题(即傅立叶限制问题),已经研究了几十年,是如何的几何形状的频率支持的傅立叶变换决定的大小的原始功能的时间。这种关系的各种量化被称为傅立叶限制估计,结果是非常具有挑战性的研究。即使是最简单的几何对象,如球体和抛物面,许多问题仍然是开放的。限制估计也很有趣,因为它们与分析内部或外部的许多其他问题有关。众所周知,限制估计可以应用于研究Kakeya猜想(关于在每个方向上包含单位线段的集合的最小面积)、薛定谔方程和波动方程解的存在性和增长性以及数论中丢番图方程解的个数。本项目研究与Fourier限制估计相关的几个问题。首先,主要研究者打算通过多项式方法进一步研究抛物面和圆锥的傅立叶限制猜想。这种方法探讨了函数的时频分解的代数结构,并已被证明是非常强大的,在获得许多国家的最先进的理论结果。其次,主要研究者建议继续研究加权限制估计(即当勒贝格测度被分形测度取代时),并将其应用于估计薛定谔方程或波动方程的发散集和距离集问题(关于集合的大小如何决定其距离集的大小)。在这个方向上的主要困难是缺乏一个关键的工具(正交性)所造成的分形措施的存在。在这里,一个有趣的方法将攻击的距离集问题直接通过研究分形测度的行为。最后,首席研究员希望探索最近开发的称为稀疏支配的工具在限制理论中的作用。这种方法源于奇异积分理论,是一种将原来的连续展开算子的研究减少到一类简单得多的并矢正局部算子的研究的方法。这种方法在奇异积分理论中已被证明是非常有用的,并已成为描述算子的现代观点。主要研究者计划进一步研究与限制估计有关的算子的稀疏边界,并具有Kakeya性质,如Bochner-Riesz乘数,沿沿着流形的奇异积分,方向极大算子,和多个该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查进行评估,被认为值得支持的搜索.
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sparse domination and the strong maximal function
稀疏支配和强极大函数
- DOI:10.1016/j.aim.2019.01.007
- 发表时间:2019
- 期刊:
- 影响因子:1.7
- 作者:Barron, Alex;Conde-Alonso, José M.;Ou, Yumeng;Rey, Guillermo
- 通讯作者:Rey, Guillermo
On Falconer’s distance set problem in the plane
- DOI:10.1007/s00222-019-00917-x
- 发表时间:2018-08
- 期刊:
- 影响因子:3.1
- 作者:L. Guth;A. Iosevich;Yumeng Ou;Hong Wang
- 通讯作者:L. Guth;A. Iosevich;Yumeng Ou;Hong Wang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yumeng Ou其他文献
Sparse domination of singular integral operators
奇异积分算子的稀疏支配
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Yumeng Ou;Alexander Barron;Michael Lacey;T. Luque;Betsy Stovall;Laura Cladek;G. Karagulyan;V. Naibo;Anh Neuman;R. Torres - 通讯作者:
R. Torres
An L 3/2 SL _ 2 Kakeya maximal inequality
An L 3/2 SL _ 2 Kakeya 最大不等式
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
John Green;And TERENCE L. J. HARRIS;Yumeng Ou - 通讯作者:
Yumeng Ou
MIXED COMMUTATORS AND LITTLE PRODUCT BMO
混合换向器和小产品 BMO
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Yumeng Ou;S. Petermichl;E. Strouse - 通讯作者:
E. Strouse
A T(b) Theorem on Product Spaces
- DOI:
10.1090/s0002-9947-2015-06246-1 - 发表时间:
2013-05 - 期刊:
- 影响因子:0
- 作者:
Yumeng Ou - 通讯作者:
Yumeng Ou
A sparse estimate for multisublinear forms involving vector-valued maximal functions
涉及向量值极大函数的多重次线性形式的稀疏估计
- DOI:
10.6092/issn.2240-2829/8171 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Amalia Culiuc;F. Plinio;Yumeng Ou - 通讯作者:
Yumeng Ou
Yumeng Ou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yumeng Ou', 18)}}的其他基金
CAREER: The Geometry of Fractals Meets Fourier Analysis
职业:分形几何与傅立叶分析的结合
- 批准号:
2142221 - 财政年份:2022
- 资助金额:
$ 13.88万 - 项目类别:
Continuing Grant
Distance Questions, Fourier Restriction, and Beyond
距离问题、傅立叶限制及其他问题
- 批准号:
2055008 - 财政年份:2021
- 资助金额:
$ 13.88万 - 项目类别:
Continuing Grant
Problems Related to Fourier Restriction Estimates
与傅里叶限制估计相关的问题
- 批准号:
2042109 - 财政年份:2020
- 资助金额:
$ 13.88万 - 项目类别:
Standard Grant
Problems Related to Fourier Restriction Estimates
与傅里叶限制估计相关的问题
- 批准号:
1764454 - 财政年份:2018
- 资助金额:
$ 13.88万 - 项目类别:
Standard Grant
相似国自然基金
Brahma related gene 1/Lamin B1通路在糖尿病肾脏疾病肾小管上皮细胞衰老中的作用
- 批准号:
- 批准年份:2021
- 资助金额:10.0 万元
- 项目类别:省市级项目
植物RETINOBLASTOMA-RELATED (RBR)蛋白网络调控根尖干细胞损伤修复的分子机制
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:
C1q/TNF-related protein 9调控平滑肌细胞程序性坏死抑制动脉粥样硬化的机制研究
- 批准号:81900309
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
降钙素基因相关肽(Calcitonin gene-related peptide, CGRP)对穴位敏化的调节及机制研究
- 批准号:81873385
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
C1q/TNF-related protein-3在银屑病代谢紊乱中的作用及机制研究
- 批准号:81402620
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Problems Related to Fourier Restriction Estimates
与傅里叶限制估计相关的问题
- 批准号:
2042109 - 财政年份:2020
- 资助金额:
$ 13.88万 - 项目类别:
Standard Grant
Problems Related to Fourier Restriction Estimates
与傅里叶限制估计相关的问题
- 批准号:
1764454 - 财政年份:2018
- 资助金额:
$ 13.88万 - 项目类别:
Standard Grant
Higher-Order Fourier analysis and related issues
高阶傅里叶分析及相关问题
- 批准号:
1942002 - 财政年份:2017
- 资助金额:
$ 13.88万 - 项目类别:
Studentship
The Fourier algebra and related banach algebras associated to a locally compact group
与局部紧群相关的傅立叶代数和相关巴纳赫代数
- 批准号:
312585-2005 - 财政年份:2010
- 资助金额:
$ 13.88万 - 项目类别:
Discovery Grants Program - Individual
The Fourier algebra and related banach algebras associated to a locally compact group
与局部紧群相关的傅立叶代数和相关巴拿赫代数
- 批准号:
312585-2005 - 财政年份:2009
- 资助金额:
$ 13.88万 - 项目类别:
Discovery Grants Program - Individual
The Fourier algebra and related banach algebras associated to a locally compact group
与局部紧群相关的傅立叶代数和相关巴拿赫代数
- 批准号:
312585-2005 - 财政年份:2008
- 资助金额:
$ 13.88万 - 项目类别:
Discovery Grants Program - Individual
The Fourier algebra and related banach algebras associated to a locally compact group
与局部紧群相关的傅立叶代数和相关巴拿赫代数
- 批准号:
312585-2005 - 财政年份:2007
- 资助金额:
$ 13.88万 - 项目类别:
Discovery Grants Program - Individual
The Fourier algebra and related banach algebras associated to a locally compact group
与局部紧群相关的傅里叶代数和相关巴拿赫代数
- 批准号:
312585-2005 - 财政年份:2006
- 资助金额:
$ 13.88万 - 项目类别:
Discovery Grants Program - Individual
IMR: Acquisition of Fourier-Transform Infrared/Raman and Dispersive Raman Modules and Assembly of Multiwavelength Platform for Materials Res. and Education Related to Works of Art
IMR:收购傅里叶变换红外/拉曼和色散拉曼模块并组装材料研究多波长平台。
- 批准号:
0526926 - 财政年份:2005
- 资助金额:
$ 13.88万 - 项目类别:
Standard Grant
The Fourier algebra and related banach algebras associated to a locally compact group
与局部紧群相关的傅里叶代数和相关巴拿赫代数
- 批准号:
312585-2005 - 财政年份:2005
- 资助金额:
$ 13.88万 - 项目类别:
Discovery Grants Program - Individual