Distance Questions, Fourier Restriction, and Beyond
距离问题、傅立叶限制及其他问题
基本信息
- 批准号:2055008
- 负责人:
- 金额:$ 19.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Distance questions are the driving forces in incidence geometry, a field of mathematics studying intersection patterns of basic geometric objects (such as points, lines, or circles). One of the most famous distance questions is called the Erdös distinct distance problem, which asks for the least number of distinct distances generated by a given set of points. Another example is the unit distance problem, concerning the maximum number of times that a fixed distance can occur among a given set of points. These questions have motivated development of tools and ideas that have wide applications in disciplines beyond mathematics, such as computer sciences, physics, and engineering. Fourier restriction concerns the Fourier transform, which decomposes a function into pieces with different frequencies of oscillation. Fourier restriction studies a fundamental question about Fourier transform: the relation between the size of a function and the geometry of its Fourier transform. This relation has important applications in partial differential equations, number theory, and other areas. This research project aims to further the understanding of the interplay between distance questions and Fourier restriction, as well as to develop modern tools with applications in various areas of mathematics, including harmonic analysis, geometric measure theory, and partial differential equations.One of the main directions in the project is driven by Falconer's conjecture, a continuous analogue of the distinct distance problem. It is conjectured that the distance set of a compact set E must have positive measure if the Hausdorff dimension of E exceeds a certain threshold. Recent results towards resolving the conjecture were obtained via new ideas from Fourier restriction theory: incidence geometry and geometric measure theory. This project will continue investigation of these approaches and apply them to other related distance questions such as general geometric configurations, multiparameter distances, and projections of fractal measures. The work aims to further the study of weighted Fourier restriction estimates and decoupling and to apply them to distance questions. The project is expected to reveal deeper connections between the discrete and continuous setting. An investigation of Fourier restriction for the cone in high dimensions will be continued using algebraic tools in connection with polynomial methods. In addition, the project will explore further applications of Fourier restriction in dispersive partial differential equations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
距离问题是入射几何的驱动力,入射几何是研究基本几何对象(如点、线或圆)相交模式的数学领域。最著名的距离问题之一叫做Erdös不同距离问题,它要求给定的一组点产生的不同距离的最少个数。另一个例子是单位距离问题,它涉及到一个固定距离在一组给定点之间出现的最大次数。这些问题推动了工具和思想的发展,这些工具和思想在数学以外的学科(如计算机科学、物理学和工程学)中有着广泛的应用。傅里叶限制涉及傅里叶变换,它将一个函数分解成具有不同振荡频率的块。傅里叶限制研究傅里叶变换的一个基本问题:函数的大小与其傅里叶变换的几何关系。这个关系在偏微分方程、数论和其他领域有重要的应用。该研究项目旨在进一步了解距离问题和傅立叶限制之间的相互作用,并开发应用于数学各个领域的现代工具,包括谐波分析,几何测量理论和偏微分方程。该项目的主要方向之一是由Falconer的猜想驱动的,这是对不同距离问题的连续模拟。我们推测当紧集E的Hausdorff维数超过一定阈值时,它的距离集一定有正测度。利用傅里叶限制理论的新思想:入射几何和几何测量理论,得到了解决该猜想的最新结果。本项目将继续研究这些方法,并将其应用于其他相关的距离问题,如一般几何构型、多参数距离和分形测度的投影。该工作旨在进一步研究加权傅里叶限制估计和解耦,并将其应用于距离问题。该项目有望揭示离散和连续设置之间更深层次的联系。高维锥体的傅里叶限制的研究将继续使用代数工具与多项式方法相结合。此外,本项目将进一步探索傅里叶限制在色散偏微分方程中的应用。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the multiparameter Falconer distance problem
关于多参数 Falconer 距离问题
- DOI:10.1090/tran/8667
- 发表时间:2022
- 期刊:
- 影响因子:1.3
- 作者:Du, Xiumin;Ou, Yumeng;Zhang, Ruixiang
- 通讯作者:Zhang, Ruixiang
Sparse bounds for the bilinear spherical maximal function
- DOI:10.1112/jlms.12715
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:Tainara Borges;B. Foster;Yumeng Ou;J. Pipher;Zirui Zhou
- 通讯作者:Tainara Borges;B. Foster;Yumeng Ou;J. Pipher;Zirui Zhou
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yumeng Ou其他文献
Sparse domination of singular integral operators
奇异积分算子的稀疏支配
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Yumeng Ou;Alexander Barron;Michael Lacey;T. Luque;Betsy Stovall;Laura Cladek;G. Karagulyan;V. Naibo;Anh Neuman;R. Torres - 通讯作者:
R. Torres
An L 3/2 SL _ 2 Kakeya maximal inequality
An L 3/2 SL _ 2 Kakeya 最大不等式
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
John Green;And TERENCE L. J. HARRIS;Yumeng Ou - 通讯作者:
Yumeng Ou
MIXED COMMUTATORS AND LITTLE PRODUCT BMO
混合换向器和小产品 BMO
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Yumeng Ou;S. Petermichl;E. Strouse - 通讯作者:
E. Strouse
A sparse estimate for multisublinear forms involving vector-valued maximal functions
涉及向量值极大函数的多重次线性形式的稀疏估计
- DOI:
10.6092/issn.2240-2829/8171 - 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Amalia Culiuc;F. Plinio;Yumeng Ou - 通讯作者:
Yumeng Ou
A T(b) Theorem on Product Spaces
- DOI:
10.1090/s0002-9947-2015-06246-1 - 发表时间:
2013-05 - 期刊:
- 影响因子:0
- 作者:
Yumeng Ou - 通讯作者:
Yumeng Ou
Yumeng Ou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yumeng Ou', 18)}}的其他基金
CAREER: The Geometry of Fractals Meets Fourier Analysis
职业:分形几何与傅立叶分析的结合
- 批准号:
2142221 - 财政年份:2022
- 资助金额:
$ 19.66万 - 项目类别:
Continuing Grant
Problems Related to Fourier Restriction Estimates
与傅里叶限制估计相关的问题
- 批准号:
2042109 - 财政年份:2020
- 资助金额:
$ 19.66万 - 项目类别:
Standard Grant
Problems Related to Fourier Restriction Estimates
与傅里叶限制估计相关的问题
- 批准号:
1764454 - 财政年份:2018
- 资助金额:
$ 19.66万 - 项目类别:
Standard Grant
Problems Related to Fourier Restriction Estimates
与傅里叶限制估计相关的问题
- 批准号:
1854148 - 财政年份:2018
- 资助金额:
$ 19.66万 - 项目类别:
Standard Grant
相似海外基金
Asking and Exploring Big Questions in Astronomy
提出和探索天文学中的大问题
- 批准号:
ST/Y005848/1 - 财政年份:2024
- 资助金额:
$ 19.66万 - 项目类别:
Research Grant
Mitigating the health risks from periodontal disease: refining and focusing the research questions
减轻牙周病的健康风险:完善和集中研究问题
- 批准号:
480806 - 财政年份:2023
- 资助金额:
$ 19.66万 - 项目类别:
Miscellaneous Programs
The changing Level 3 qualifications market Rationale and Research questions
不断变化的 3 级资格市场基本原理和研究问题
- 批准号:
2883720 - 财政年份:2023
- 资助金额:
$ 19.66万 - 项目类别:
Studentship
IMR: MM-1C: An Extensible Platform for Asking Research Questions of High-Speed Network Links
IMR:MM-1C:用于提出高速网络链路研究问题的可扩展平台
- 批准号:
2319080 - 财政年份:2023
- 资助金额:
$ 19.66万 - 项目类别:
Standard Grant
Some Algorithmic Questions Related to the Mordell Conjecture
与莫德尔猜想相关的一些算法问题
- 批准号:
2313466 - 财政年份:2023
- 资助金额:
$ 19.66万 - 项目类别:
Standard Grant
Collaborative Research: Machine Learning for Student Reasoning during Challenging Concept Questions
协作研究:机器学习在挑战性概念问题中帮助学生推理
- 批准号:
2226553 - 财政年份:2023
- 资助金额:
$ 19.66万 - 项目类别:
Standard Grant
Collaborative Research: Machine Learning for Student Reasoning during Challenging Concept Questions
协作研究:机器学习在挑战性概念问题中帮助学生推理
- 批准号:
2226601 - 财政年份:2023
- 资助金额:
$ 19.66万 - 项目类别:
Standard Grant
A national approach to prioritizing emerging research questions in COVID-19 in transplantation
优先考虑移植中 COVID-19 新兴研究问题的国家方法
- 批准号:
480813 - 财政年份:2023
- 资助金额:
$ 19.66万 - 项目类别:
Miscellaneous Programs
Strategic Engagement of Patients in Sepsis preclinical Studies (SEPSIS): A Priority-Setting Exercise to Identify Patient Important Questions
患者战略性参与脓毒症临床前研究 (SEPSIS):确定患者重要问题的优先顺序设置练习
- 批准号:
487935 - 财政年份:2023
- 资助金额:
$ 19.66万 - 项目类别:
Miscellaneous Programs
Questions of National Identity in Palestinian Hip-Hop 2010 to 2021
2010 年至 2021 年巴勒斯坦嘻哈音乐中的民族认同问题
- 批准号:
2879630 - 财政年份:2023
- 资助金额:
$ 19.66万 - 项目类别:
Studentship














{{item.name}}会员




