FRG: Collaborative Research: Dimers in Combinatorics and Physics

FRG:合作研究:组合学和物理学中的二聚体

基本信息

项目摘要

Statistical mechanics is the mathematical study of matter at small scales. Its primary goals are to analyze phase transitions: for example liquid-to-solid transitions where the physical properties of a substance change abruptly. The dimer model was originally conceived as a simplified model of two-dimensional matter in which phase transitions can be studied. Recent work, however, has linked the model to many other areas of mathematics, from combinatorics to string theory, where ''brane dimers'' are proposed as fundamental descriptions of spacetime at small scales. The PIs propose to jointly investigate a number of interrelated topics in mathematics and physics, each of which has the dimer model as its underlying combinatorial structure. This project will lead to the organization of workshops and regular meetings of the PIs and their graduate students and postdoctoral fellows, continuing the PIs' efforts to get young mathematicians and physicists involved in these topics. The PIs will contribute to the mathematical community through their mentorship of young scholars, research talks in conferences and workshops, papers published in peer-reviewed journals, and books on a selection of these topics.The dimer model studies the set of all dimers, or perfect matchings, on a planar bipartite graph G on a disk or Riemann surface. Despite the simple definition, there are many open problems about the dimer model, as well as applications to geometry, algebra, and physics. There is a fundamental connection between the dimer model on the disk and the Grassmannian, via the fact that generating functions of dimers satisfy Plucker relations. This fact leads to the cluster algebra structure on the homogeneous coordinate ring of the Grassmannian, and the beautiful combinatorics of the positive Grassmannian. This project will explore a myriad of generalizations of the objects mentioned above, and will significantly improve our understanding of: the dimer model on non-planar graphs; limiting behaviors of the dimer model on a torus and other surfaces; the connection between dimers on a torus and brane tilings in string theory; soliton solutions to the KP equation and the bipartite graphs realizable as soliton graphs; the relationship between convex polygon tilings and the corresponding bipartite planar graphs with Kasteleyn weightings; the connection between the dimer model and triangulations of the amplituhedron, an object whose volume computes scattering amplitudes; and higher-dimensional dimer models, colored quivers and a generalized notion of cluster mutation, exciting new objects motivated by dualities in supersymmetric quantum field theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
统计力学是对小尺度物质的数学研究。它的主要目标是分析相变:例如,物质的物理性质突然变化的液体到固体的转变。二聚体模型最初被认为是二维物质的简化模型,其中可以研究相变。然而,最近的工作将该模型与许多其他数学领域联系起来,从组合学到弦理论,其中“膜二聚体”被提出作为小尺度时空的基本描述。pi建议联合研究数学和物理中一些相互关联的主题,每个主题都有二聚体模型作为其潜在的组合结构。该项目将组织pi及其研究生和博士后的研讨会和定期会议,继续pi的努力,让年轻的数学家和物理学家参与这些主题。pi将通过他们对年轻学者的指导、在会议和研讨会上的研究演讲、在同行评审期刊上发表的论文以及精选这些主题的书籍,为数学界做出贡献。二聚体模型研究圆盘或黎曼曲面上平面二部图G上所有二聚体的集合或完美匹配。尽管二聚体模型的定义很简单,但仍有许多悬而未决的问题,以及在几何、代数和物理方面的应用。圆盘上的二聚体模型与格拉斯曼模型之间有一个基本的联系,即二聚体的生成函数满足普拉克关系。这一事实导致了格拉斯曼年齐次坐标环上的聚类代数结构,以及正格拉斯曼年的美丽组合。该项目将探索上述对象的无数推广,并将显著提高我们对以下方面的理解:非平面图上的二聚体模型;二聚体模型在环面和其他表面上的极限行为环面二聚体与弦理论中膜层的关系KP方程的孤子解和可实现为孤子图的二部图;带Kasteleyn权值的凸多边形平铺与相应的二部平面图之间的关系;二聚体模型与振幅面体的三角剖分之间的联系,振幅面体是一个用体积计算散射振幅的物体;高维二聚体模型,彩色颤振和广义的簇突变概念,超对称量子场论中由对偶性激发的令人兴奋的新物体。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Specht modules decompose as alternating sums of restrictions of Schur modules
Specht 模块分解为 Schur 模块的限制的交替总和
Derivatives of Schubert polynomials and proof of a determinant conjecture of Stanley
舒伯特多项式的导数和斯坦利行列式猜想的证明
  • DOI:
    10.5802/alco.93
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hamaker, Zachary;Pechenik, Oliver;Speyer, David E;Weigandt, Anna
  • 通讯作者:
    Weigandt, Anna
The fundamental theorem of finite semidistributive lattices
有限半分布格基本定理
  • DOI:
    10.1007/s00029-021-00656-z
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Reading, Nathan;Speyer, David E;Thomas, Hugh
  • 通讯作者:
    Thomas, Hugh
The positive Dressian equals the positive tropical Grassmannian
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Speyer其他文献

An arctic circle theorem for Groves
  • DOI:
    10.1016/j.jcta.2004.11.013
  • 发表时间:
    2005-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    T. Kyle Petersen;David Speyer
  • 通讯作者:
    David Speyer

David Speyer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Speyer', 18)}}的其他基金

Combinatorial Structures in Cluster Algebras
簇代数中的组合结构
  • 批准号:
    2246570
  • 财政年份:
    2023
  • 资助金额:
    $ 29.76万
  • 项目类别:
    Standard Grant
Geometry of Cluster Algebras
簇代数的几何
  • 批准号:
    1855135
  • 财政年份:
    2019
  • 资助金额:
    $ 29.76万
  • 项目类别:
    Standard Grant
Combinatorics of Cluster Varieties
簇簇组合学
  • 批准号:
    1600223
  • 财政年份:
    2016
  • 资助金额:
    $ 29.76万
  • 项目类别:
    Continuing Grant

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 29.76万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 29.76万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 29.76万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 29.76万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 29.76万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: New Birational Invariants
FRG:合作研究:新的双理性不变量
  • 批准号:
    2245171
  • 财政年份:
    2023
  • 资助金额:
    $ 29.76万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2403764
  • 财政年份:
    2023
  • 资助金额:
    $ 29.76万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245021
  • 财政年份:
    2023
  • 资助金额:
    $ 29.76万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245097
  • 财政年份:
    2023
  • 资助金额:
    $ 29.76万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245147
  • 财政年份:
    2023
  • 资助金额:
    $ 29.76万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了