Combinatorial Structures in Cluster Algebras

簇代数中的组合结构

基本信息

项目摘要

Cluster varieties are certain highly symmetric and structured geometric spaces. Over the last twenty years, cluster varieties have turned up throughout geometry, representation theory and mathematical physics. Cluster algebras are algebraic structures which allow us to compute with cluster varieties and understand their structure. This research project pursues two lines of investigation in order to better understand cluster varieties. The project provides training opportunities for both undergraduate and graduate students.The first line of investigation is to construct cluster structures on braid varieties, Richardson varieties, and related spaces. These are geometric objects which originally arose in representation theory and have recently been discovered to play important roles in knot theory. Constructing cluster structures on these spaces will allow us to use all the techniques from cluster theory to explore these spaces. The second line of investigation is to develop relationships between cluster varieties and Coxeter groups, which describe the symmetries of collections of reflecting mirrors. This has been extensively done for cluster algebras "of finite type", which correspond to Coxeter groups with finitely many reflections, but an analogous story should exist for all cluster algebras, and this project proposes to develop it.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
簇簇是一类高度对称的结构化几何空间。在过去的20年里,星系团的变种已经出现在几何学、表示论和数学物理学中。簇代数是一种代数结构,它允许我们计算簇簇并理解它们的结构。为了更好地了解集群品种,本研究项目进行了两条调查路线。该项目为本科生和研究生提供了培训机会。研究的第一条线是在辫子簇,Richardson簇和相关空间上构造簇结构。这些几何对象最初出现在表示论中,最近被发现在纽结理论中发挥重要作用。在这些空间上构建集群结构将使我们能够使用集群理论的所有技术来探索这些空间。研究的第二条路线是发展集群品种和考克斯特群之间的关系,考克斯特群描述了反射镜集合的对称性。这已经广泛地做了集群代数“有限型”,这对应于Coxeter群有许多反射,但类似的故事应该存在于所有集群代数,这个项目建议开发它。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cohomology of cluster varieties II: Acyclic case
簇簇的上同调 II:无环情况
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Speyer其他文献

An arctic circle theorem for Groves
  • DOI:
    10.1016/j.jcta.2004.11.013
  • 发表时间:
    2005-07-01
  • 期刊:
  • 影响因子:
  • 作者:
    T. Kyle Petersen;David Speyer
  • 通讯作者:
    David Speyer

David Speyer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Speyer', 18)}}的其他基金

FRG: Collaborative Research: Dimers in Combinatorics and Physics
FRG:合作研究:组合学和物理学中的二聚体
  • 批准号:
    1854225
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Geometry of Cluster Algebras
簇代数的几何
  • 批准号:
    1855135
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Combinatorics of Cluster Varieties
簇簇组合学
  • 批准号:
    1600223
  • 财政年份:
    2016
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似海外基金

Cluster structures for positroid cells in the Grassmannian
格拉斯曼阶正样细胞的簇结构
  • 批准号:
    2744564
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
Unified description for cluster-hsell structures and contribution to nucleosynthesis
簇-hsell结构的统一描述和对核合成的贡献
  • 批准号:
    22K03618
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Cluster structures with non-integer quivers
具有非整数箭袋的簇结构
  • 批准号:
    2572398
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
Collaborative Research: Generalized Cluster Structures on Poisson Varieties and Applications
合作研究:泊松簇的广义簇结构及其应用
  • 批准号:
    2100785
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: Generalized Cluster Structures on Poisson Varieties and Applications
合作研究:泊松簇的广义簇结构及其应用
  • 批准号:
    2100791
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Development of metal cluster formation with cubic based structures and their catalytic reactivities
立方基结构金属簇形成及其催化反应性的发展
  • 批准号:
    20K05244
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elucidation of synthesis mechanism and functions of metal-cluster connected structures
阐明金属簇连接结构的合成机理和功能
  • 批准号:
    20H02698
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Cluster tool for local material growth (of nano to millimeter structures applying laser irradiation and reactive gas)
用于局部材料生长的集群工具(应用激光照射和反应气体的纳米到毫米结构)
  • 批准号:
    439445370
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Major Research Instrumentation
Cluster Structures on Algebraic Varieties
代数簇上的簇结构
  • 批准号:
    2270571
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Studentship
Elucidation of the internal structures and derivations of the rightward movement constructions with a cluster of auxiliary verbs
助动词群右移结构的内部结构及派生阐释
  • 批准号:
    17K02802
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了