Collaborative Research: Adaptive Gaussian Markov Random Fields for Large-scale Discrete Optimization via Simulation
协作研究:通过仿真实现大规模离散优化的自适应高斯马尔可夫随机场
基本信息
- 批准号:1854659
- 负责人:
- 金额:$ 14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-15 至 2022-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Major federal agencies, including the Department of Veterans Affairs, Department of Defense, Department of Homeland Security, Federal Aviation Administration, Department of the Treasury, Internal Revenue Service, Centers for Medicare and Medicaid Services, Department of Health and Human Services, and others, seek government and non-government assistance with the application of scientific, data-driven methods to help them execute effectively on their critical missions. Because their mandate is typically large-scale, complex, and involves inherent uncertainty, computer simulation is often the only tool for representing their problems in a comprehensive way. Similar problems occur in the private sector, especially in health care delivery, computer networks, warehousing and distribution, and transportation systems. Unfortunately, "large-scale, complex, and involving inherent uncertainty" are the features that make "optimizing" a simulated system hard, particularly when the decisions are how to allocate discrete units of resources such as personnel, vehicles and facilities. The proposed research marries high-performance computing, smart numerical methods, and state-of-the-art statistical methodology to significantly increase the size and complexity of simulated systems that can be optimized. As a result, agencies such as those listed above will be able to more fully solve their "system of systems" resource-allocation problems using computer simulation.The proposed research tackles statistical and computational challenges that arise in solving large-scale stochastic optimization problems when the objective function may only be evaluated by executing a stochastic simulation. Such optimization problems are often with respect to a high-dimensional, discrete-valued decision variable in a large solution space. The modeling flexibility of simulation comes at a cost: arbitrarily complex stochastic simulations may not be optimized using tools from mathematical programming. As a result, the scale of problems that can currently be solved by simulation with an optimality gap guarantee is limited. The investigators propose to create theory, algorithms and software for large-scale discrete-decision-variable simulation optimization that converge to the global optimum asymptotically, and provide optimality-gap inference when terminated. The proposed methods are based on inferential optimization, which models the unknown objective function by a Gaussian Markov Random Field (GMRF), a type of Gaussian Process defined by a graph on the discrete solution space; the investigators have shown that GMRFs provide better inference for a discrete problems than Gaussian processes defined on a continuous domain. The conditional distribution of a GMRF provides inference for selecting solutions to simulate and for search termination when the inferred optimality gap is small. However, the computational cost of numerical linear algebra increases faster than the number of feasible solutions. To facilitate the solution of large-scale problems, three core topics are proposed: exploiting high-performance computing; creating a restricted search scheme and tailored computational linear algebra that significantly reduces the computations in GMRF updates; and attacking limits on dimensionality via an adaptive multi-resolution GMRF and projections to lower dimensions. This award will provide support of graduate student training through research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
主要的联邦机构,包括退伍军人事务部,国防部,国土安全部,联邦航空管理局,财政部,国税局部,医疗保险和医疗补助服务中心,卫生与公共服务部,卫生与公共服务部以及其他人,寻求政府和非政府援助,以帮助他们在科学,数据驱动的方法上有效地执行有效地执行他们的关键措施。由于他们的任务通常是大规模,复杂的,并且涉及固有的不确定性,因此计算机模拟通常是以全面的方式来表示问题的唯一工具。私营部门,尤其是在医疗保健,计算机网络,仓库和分销以及运输系统中发生的类似问题。不幸的是,“大规模,复杂且涉及固有的不确定性”是使“优化”模拟系统努力的功能,尤其是当决策是如何分配人员,车辆,车辆和设施等资源的离散单位时。拟议的研究结合了高性能计算,智能数值方法和最先进的统计方法,以显着提高可以优化的模拟系统的大小和复杂性。结果,诸如上面列出的机构将能够使用计算机模拟更加充分地解决其“系统系统”资源分配问题。拟议的研究解决了仅当仅通过执行随机模拟来评估目标函数时,才能解决大规模的随机功能时出现的统计和计算挑战。这种优化问题通常是关于大型解决方案空间中高维,离散价值的决策变量的。模拟的建模灵活性是有代价的:使用数学编程中的工具,可能不会优化任意复杂的随机模拟。结果,当前可以通过具有最佳差距保证的模拟解决的问题的规模是有限的。调查人员建议为大规模离散 - 否定变量的模拟优化创建理论,算法和软件,从而收敛到全局最佳最佳最佳,并在终止时提供最佳的差距推断。所提出的方法基于推论优化,该方法通过高斯Markov随机场(GMRF)建模未知目标函数,这是一种由离散解决方案空间上图定义的高斯过程。研究人员表明,与连续域上定义的高斯过程相比,GMRF为离散问题提供了更好的推论。 GMRF的条件分布提供了选择解决方案以模拟和搜索终止的推断,当时推断的最佳差距很小。但是,数值线性代数的计算成本比可行解决方案的数量更快。为了促进大规模问题的解决方案,提出了三个核心主题:利用高性能计算;创建一个受限制的搜索方案和量身定制的计算线性代数,该代数可大大减少GMRF更新中的计算;并通过自适应多分辨率GMRF和降低维度的预测来攻击维度的限制。该奖项将通过研究为研究生培训提供支持。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的影响审查标准的评估来支持的。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Online Maintenance Prioritization Via Monte Carlo Tree Search and Case-Based Reasoning
- DOI:10.1115/1.4053408
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Michael Hoffman;Eunhye Song;Michael Brundage;S. Kumara
- 通讯作者:Michael Hoffman;Eunhye Song;Michael Brundage;S. Kumara
Nonparametric Kullback-Liebler Divergence Estimation Using M-Spacing
使用 M 间距的非参数 Kullback-Liebler 散度估计
- DOI:10.1109/wsc52266.2021.9715376
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:He, Linyun;Song, Eunhye
- 通讯作者:Song, Eunhye
Smart Linear Algebraic Operations for Efficient Gaussian Markov Improvement Algorithm
- DOI:10.1109/wsc48552.2020.9384017
- 发表时间:2020-12
- 期刊:
- 影响因子:0
- 作者:Xinru Li;Eunhye Song
- 通讯作者:Xinru Li;Eunhye Song
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Eunhye Song其他文献
Uncertainty Quantification in Vehicle Content Optimization for General Motors
通用汽车车辆内容优化中的不确定性量化
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Eunhye Song;Peiling Wu;B. Nelson - 通讯作者:
B. Nelson
Acupoint herbal patching for bronchitis
穴位中药贴敷治疗支气管炎
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:1.6
- 作者:
J. Jun;K. Kim;Eunhye Song;L. Anga;Sunju Park - 通讯作者:
Sunju Park
A scoping review on traditional medicine for bruxism
- DOI:
10.1016/j.jtcms.2023.01.001 - 发表时间:
2023-04-01 - 期刊:
- 影响因子:
- 作者:
Lin Ang;Eunhye Song;Myeong Soo Lee;Yee Ang - 通讯作者:
Yee Ang
Efficient Nested Simulation Experiment Design via the Likelihood Ratio Method
通过似然比法进行高效嵌套仿真实验设计
- DOI:
10.1287/ijoc.2022.0392 - 发表时间:
2020 - 期刊:
- 影响因子:2.1
- 作者:
B. Feng;Eunhye Song - 通讯作者:
Eunhye Song
A quicker assessment of input uncertainty
更快地评估输入不确定性
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Eunhye Song;B. Nelson - 通讯作者:
B. Nelson
Eunhye Song的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Eunhye Song', 18)}}的其他基金
Collaborative Research: Adaptive Gaussian Markov Random Fields for Large-scale Discrete Optimization via Simulation
协作研究:通过仿真实现大规模离散优化的自适应高斯马尔可夫随机场
- 批准号:
2243210 - 财政年份:2022
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
CAREER: Advancing Theory and Practice of Robust Simulation Analysis Under Input Model Risk
职业:推进输入模型风险下稳健仿真分析的理论和实践
- 批准号:
2246281 - 财政年份:2022
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
CAREER: Advancing Theory and Practice of Robust Simulation Analysis Under Input Model Risk
职业:推进输入模型风险下稳健仿真分析的理论和实践
- 批准号:
2045400 - 财政年份:2021
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
相似国自然基金
面向开放环境的无人潜航器集群自适应协作控制方法研究
- 批准号:62306211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
针对动态状态约束的人机协作系统自适应最优控制方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
针对动态状态约束的人机协作系统自适应最优控制方法研究
- 批准号:62203392
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
受生物启发的多水下机器人环境自适应集群协作控制方法及实验研究
- 批准号:61973007
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
弱时间同步下自适应拓扑变化的移动水声网络高精度自定位方法研究
- 批准号:61901057
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335802 - 财政年份:2024
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Collaborative Research: Using Adaptive Lessons to Enhance Motivation, Cognitive Engagement, And Achievement Through Equitable Classroom Preparation
协作研究:通过公平的课堂准备,利用适应性课程来增强动机、认知参与和成就
- 批准号:
2335801 - 财政年份:2024
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
- 批准号:
2316612 - 财政年份:2024
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Collaborative Research: Uncovering the adaptive origins of fossil apes through the application of a transdisciplinary approach
合作研究:通过应用跨学科方法揭示类人猿化石的适应性起源
- 批准号:
2316615 - 财政年份:2024
- 资助金额:
$ 14万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 14万 - 项目类别:
Standard Grant