Collaborative Research: CDS&E-MSS: Exact Homological Algebra for Computational Topology

合作研究:CDS

基本信息

  • 批准号:
    1854703
  • 负责人:
  • 金额:
    $ 12.98万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

A central problem in data-driven scientific inquiry is how to interpret structures in large data sets uncovered by modern tools. The field of topological data analysis provides a potential solution via the language of homology, which encodes features of interest as cycles. These, in principle, can be located and understood as generators, which reveal explicit structure in the original data. However, fundamental mathematical and computational challenges have restricted most topological analyses to the study of persistence diagrams, numerical summaries that omit generators and, thus, dramatically limit modeling power and explainability. This project draws on diverse ideas from the mathematical domains of algebraic topology, numerical linear algebra, category and order-lattice theory, computation, and combinatorics, and from the scientific and engineering domains of biological aggregations, brain, and medical imaging. It provides ample opportunities for training mathematical scientists for the mastery of these tools, and for developing new, exploratory methods in STEM teaching and learning.The ExHACT project will provide the tools needed to realize the full modeling and explanatory capability of generating cycles by creating a unified theoretical and computational tool set for persistent homological algebra. Recent results in the fields of matroid theory and exact categories (from which the project draws its name) developed by one of the PIs provide the foundation for efficiently performing the necessary computations using well-understood matrix manipulations. The PIs will capitalize on this new opportunity by developing theoretical and computational tools for the study of persistent generators, induced homomorphisms of persistence modules, exact and spectral sequences, and relative persistent homology, among other methods. They will augment this computational core with data visualization capabilities to facilitate graphical exploration of homological data in an intuitive fashion for scientists without extensive mathematical background, and provide new tools for existing research groups that currently apply topological methods in materials science, neuroscience, biochemistry, and biological aggregations. ExHACT will also enable custom functionality and workflows to be built by more experienced users, providing a stable community platform for the development of new methodologies in topological data analysis. All software functionality will be extensively documented, including both technical specifications and detailed use cases, in order to make a full suite of computation and visualization capabilities accessible to a broad audience.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数据驱动的科学探究的一个核心问题是如何解释现代工具发现的大型数据集中的结构。拓扑数据分析领域通过同源语言提供了一种潜在的解决方案,该语言将感兴趣的特征编码为循环。原则上,这些可以被定位和理解为生成器,它揭示了原始数据中的显式结构。然而,基本的数学和计算的挑战限制了大多数拓扑分析的持久性图的研究,省略发电机的数值摘要,从而大大限制了建模能力和可解释性。该项目借鉴了代数拓扑,数值线性代数,类别和序格理论,计算和组合学的数学领域,以及生物聚合,大脑和医学成像的科学和工程领域的各种想法。它为培训数学科学家掌握这些工具提供了充足的机会,并为STEM教学和学习开发新的探索性方法提供了充足的机会。ExHACT项目将通过为持久同调代数创建统一的理论和计算工具集,提供实现生成循环的完整建模和解释能力所需的工具。最近在拟阵理论和精确类别(该项目由此得名)领域的研究成果,为使用熟知的矩阵操作有效地执行必要的计算提供了基础。PI将利用这一新的机会,开发理论和计算工具,用于研究持久生成器,持久模块的诱导同态,精确和谱序列,以及相对持久同源性等方法。他们将通过数据可视化功能增强这个计算核心,以便于没有广泛数学背景的科学家以直观的方式对同源数据进行图形化探索,并为目前在材料科学,神经科学,生物化学和生物聚合中应用拓扑方法的现有研究小组提供新工具。ExHACT还将使更有经验的用户能够建立自定义功能和工作流程,为开发拓扑数据分析的新方法提供稳定的社区平台。所有的软件功能将被广泛记录,包括技术规格和详细的用例,以使一套完整的计算和可视化功能可供广大受众使用。该奖项反映了NSF的法定使命,并已被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lori Ziegelmeier其他文献

An application of persistent homology on Grassmann manifolds for the detection of signals in hyperspectral imagery
格拉斯曼流形上持久同源性的应用用于高光谱图像信号检测
Local Versus Global Distances for Zigzag Persistence Modules
Zigzag 持久性模块的本地距离与全球距离
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ellen Gasparovic;Maria Gommel;Emilie Purvine;R. Sazdanovic;Bei Wang;Yusu Wang;Lori Ziegelmeier
  • 通讯作者:
    Lori Ziegelmeier
Local Versus Global Distances for Zigzag and Multi-Parameter Persistence Modules
Zigzag 和多参数持久性模块的本地距离与全局距离
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ellen Gasparovic;Maria Gommel;Emilie Purvine;R. Sazdanovic;Bei Wang;Yusu Wang;Lori Ziegelmeier
  • 通讯作者:
    Lori Ziegelmeier
U-match factorization: sparse homological algebra, lazy cycle representatives, and dualities in persistent (co)homology
U 匹配分解:稀疏同调代数、惰性循环代表以及持久(共)同调中的对偶性
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Haibin Hang;Chad Giusti;Lori Ziegelmeier;Gregory Henselman
  • 通讯作者:
    Gregory Henselman
Persistent Homology on Grassmann Manifolds for Analysis of Hyperspectral Movies
用于高光谱电影分析的格拉斯曼流形的持久同源性

Lori Ziegelmeier的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lori Ziegelmeier', 18)}}的其他基金

Collaborative Research: RUI: HNDS-R: Stepping out of flatland: Complex networks, topological data analysis, and the progress of science
合作研究:RUI:HNDS-R:走出平地:复杂网络、拓扑数据分析和科学进步
  • 批准号:
    2318171
  • 财政年份:
    2023
  • 资助金额:
    $ 12.98万
  • 项目类别:
    Standard Grant
CBMS Regional Research Conference on Topological Data Analysis
CBMS 拓扑数据分析区域研究会议
  • 批准号:
    1642637
  • 财政年份:
    2017
  • 资助金额:
    $ 12.98万
  • 项目类别:
    Standard Grant
Workshop for Women in Computational Topology
计算拓扑学女性研讨会
  • 批准号:
    1619908
  • 财政年份:
    2016
  • 资助金额:
    $ 12.98万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347345
  • 财政年份:
    2024
  • 资助金额:
    $ 12.98万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
  • 批准号:
    2347423
  • 财政年份:
    2024
  • 资助金额:
    $ 12.98万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347344
  • 财政年份:
    2024
  • 资助金额:
    $ 12.98万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
  • 批准号:
    2347422
  • 财政年份:
    2024
  • 资助金额:
    $ 12.98万
  • 项目类别:
    Standard Grant
CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
  • 批准号:
    2420358
  • 财政年份:
    2024
  • 资助金额:
    $ 12.98万
  • 项目类别:
    Standard Grant
CDS&E/Collaborative Research: Data-Driven Inverse Design of Additively Manufacturable Aperiodic Architected Cellular Materials
CDS
  • 批准号:
    2245298
  • 财政年份:
    2023
  • 资助金额:
    $ 12.98万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E-MSS: Community detection via covariance structures
合作研究:CDS
  • 批准号:
    2245380
  • 财政年份:
    2023
  • 资助金额:
    $ 12.98万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Systematic Predictions for Dynamical Signatures of New Dark Matter Physics in Galaxies
合作研究:CDS
  • 批准号:
    2307787
  • 财政年份:
    2023
  • 资助金额:
    $ 12.98万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Computational Exploration of Electrically Conductive Metal-Organic Frameworks as Cathode Materials in Lithium-Sulfur Batteries
合作研究:CDS
  • 批准号:
    2302618
  • 财政年份:
    2023
  • 资助金额:
    $ 12.98万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了