Enhanced Statistical Learning for Physical Systems Exploiting Non-Standard Constraints

利用非标准约束增强物理系统的统计学习

基本信息

  • 批准号:
    1854731
  • 负责人:
  • 金额:
    $ 27.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-15 至 2023-05-31
  • 项目状态:
    已结题

项目摘要

Real world systems are often naturally constrained by physical laws or human behavioral patterns, and understanding of such systems can be significantly enhanced by incorporating said constraints into the inferential mechanism. However, the presence of multiple constraints can complicate the process of statistical learning. This project aims to develop novel statistical methods to help solve real world problems where a multitude of complex constraints pose inferential challenges. Motivations are drawn directly from three concrete applications: i) extracting the radius of proton from electric form-factor data, a fundamental problem in atomic physics which is of high relevance due to anomalies between results from different modes of experimentation, ii) describing the relationship between wind velocity and power derived from wind-turbines, which is one of the fastest growing renewable sources of energy and iii) describing the traffic flow pattern with traffic speed, a key object of research in traffic engineering. The project will bring together ideas from machine learning and Bayesian nonparametrics to develop statistically sound and computationally efficient methods of inference in constrained decision problems. The project aims to develop a principled probabilistic approach towards inference in scientific and engineering applications where various physical constraints provide a priori knowledge regarding key objects of inference. Such objects may correspond to a single curve or a collection of curves or density functions. The PI and co-PI will develop novel statistical methods for simultaneous incorporation of multiple shape constraints motivated by real scientific and engineering applications, while being broadly generalizable beyond the considered applications. Emphasis is laid on obtaining equivalent representations of various constraints within a flexible nonparametric Bayesian model, and developing novel prior distributions on these constrained spaces. The Bayesian approach is attractive to obtain uncertainty estimates, and the PI and co-PI aim to develop rigorous theoretical guarantees for the frequentist validity of Bayesian uncertainty measures in the present setting. In addition, the PI and co-PI propose to demonstrate that including the constraints diminishes the uncertainty which will subsequently lead to better scientific conclusions. The methodological developments will be accompanied by efficient computation algorithms that meet the scalability demanded by the specific applications and beyond. To maximize the impact of the methodology developed, the PI and co-PI will closely collaborate with domain experts for the specific applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
真实的世界系统通常自然地受到物理定律或人类行为模式的约束,并且通过将所述约束结合到推理机制中可以显著地增强对这样的系统的理解。然而,多个约束的存在会使统计学习的过程复杂化。该项目旨在开发新的统计方法,以帮助解决真实的世界问题,其中大量复杂的约束条件构成推理挑战。动机直接来自三个具体的应用:i)从电形状因子数据中提取质子的半径,这是原子物理学中的一个基本问题,由于来自不同实验模式的结果之间的异常,这是高度相关的,ii)描述风速和从风力涡轮机导出的功率之间的关系,这是发展最快的可再生能源之一,以及iii)用交通速度描述交通流模式,这是交通工程中的关键研究对象。该项目将汇集来自机器学习和贝叶斯非参数化的想法,以开发在约束决策问题中统计上合理和计算上有效的推理方法。该项目旨在开发一种原则性的概率方法,用于科学和工程应用中的推理,其中各种物理约束提供了有关推理关键对象的先验知识。这样的对象可以对应于单个曲线或曲线或密度函数的集合。PI和共同PI将开发新的统计方法,同时纳入多个形状的约束动机的真实的科学和工程应用,而被广泛推广超出所考虑的应用。重点是在一个灵活的非参数贝叶斯模型中获得各种约束的等价表示,并在这些约束空间上开发新的先验分布。贝叶斯方法是有吸引力的,以获得不确定性估计,PI和共同PI的目的是制定严格的理论保证贝叶斯不确定性措施的频率有效性,在目前的设置。此外,PI和co-PI建议证明,包括限制减少了不确定性,这将随后导致更好的科学结论。方法学的发展将伴随着高效的计算算法,以满足特定应用及其他应用所需的可扩展性。为了最大限度地发挥所开发方法的影响,PI和co-PI将与领域专家密切合作,以实现特定的应用。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A mass-shifting phenomenon of truncated multivariate normal priors
  • DOI:
    10.1080/01621459.2022.2129059
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Shuang Zhou;Pallavi Ray;D. Pati;A. Bhattacharya
  • 通讯作者:
    Shuang Zhou;Pallavi Ray;D. Pati;A. Bhattacharya
Reexamining the proton-radius problem using constrained Gaussian processes
  • DOI:
    10.1103/physrevc.99.055202
  • 发表时间:
    2018-08
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Shuang Zhou;P. Giulani;J. Piekarewicz;A. Bhattacharya;D. Pati
  • 通讯作者:
    Shuang Zhou;P. Giulani;J. Piekarewicz;A. Bhattacharya;D. Pati
Radius and equation of state constraints from massive neutron stars and GW190814
  • DOI:
    10.1103/physrevc.104.l032802
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Y. Lim;A. Bhattacharya;J. Holt;D. Pati
  • 通讯作者:
    Y. Lim;A. Bhattacharya;J. Holt;D. Pati
Modality-Constrained Density Estimation via Deformable Templates
通过可变形模板进行模态约束密度估计
  • DOI:
    10.1080/00401706.2020.1867647
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Dasgupta, Sutanoy;Pati, Debdeep;Jermyn, Ian H.;Srivastava, Anuj
  • 通讯作者:
    Srivastava, Anuj
Efficient Bayesian shape-restricted function estimation with constrained Gaussian process priors
具有约束高斯过程先验的高效贝叶斯形状限制函数估计
  • DOI:
    10.1007/s11222-020-09922-0
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Ray, Pallavi;Pati, Debdeep;Bhattacharya, Anirban
  • 通讯作者:
    Bhattacharya, Anirban
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Debdeep Pati其他文献

Debdeep Pati的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Debdeep Pati', 18)}}的其他基金

Prior Calibration and Algorithmic Guarantees under Parameter Restrictions
参数限制下的事先校准和算法保证
  • 批准号:
    1916371
  • 财政年份:
    2019
  • 资助金额:
    $ 27.93万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Bayesian Methods for Complex Data with Optimality Guarantees
协作研究:具有最优性保证的复杂数据的可扩展贝叶斯方法
  • 批准号:
    1840555
  • 财政年份:
    2017
  • 资助金额:
    $ 27.93万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Bayesian Methods for Complex Data with Optimality Guarantees
协作研究:具有最优性保证的复杂数据的可扩展贝叶斯方法
  • 批准号:
    1613156
  • 财政年份:
    2016
  • 资助金额:
    $ 27.93万
  • 项目类别:
    Standard Grant

相似海外基金

Structural statistical learning of heterogeneous preferences for smart energy choices with a case study on coordinated electric vehicle charging
智能能源选择异构偏好的结构统计学习以及协调电动汽车充电的案例研究
  • 批准号:
    2342215
  • 财政年份:
    2024
  • 资助金额:
    $ 27.93万
  • 项目类别:
    Continuing Grant
CAREER: New Frameworks for Ethical Statistical Learning: Algorithmic Fairness and Privacy
职业:道德统计学习的新框架:算法公平性和隐私
  • 批准号:
    2340241
  • 财政年份:
    2024
  • 资助金额:
    $ 27.93万
  • 项目类别:
    Continuing Grant
EAGER: SSMCDAT2023: Revealing Local Symmetry Breaking in Intermetallics: Combining Statistical Mechanics and Machine Learning in PDF Analysis
EAGER:SSMCDAT2023:揭示金属间化合物中的局部对称性破缺:在 PDF 分析中结合统计力学和机器学习
  • 批准号:
    2334261
  • 财政年份:
    2023
  • 资助金额:
    $ 27.93万
  • 项目类别:
    Standard Grant
REU Site: University of North Carolina at Greensboro - Complex Data Analysis using Statistical and Machine Learning Tools
REU 站点:北卡罗来纳大学格林斯伯勒分校 - 使用统计和机器学习工具进行复杂数据分析
  • 批准号:
    2244160
  • 财政年份:
    2023
  • 资助金额:
    $ 27.93万
  • 项目类别:
    Standard Grant
Comparison of Machine Learning and Conventional Statistical Modeling for Predicting Readmission Following Acute Heart Failure Hospitalization
机器学习与传统统计模型预测急性心力衰竭住院后再入院的比较
  • 批准号:
    495410
  • 财政年份:
    2023
  • 资助金额:
    $ 27.93万
  • 项目类别:
Modern Statistics and Statistical Machine Learning
现代统计学和统计机器学习
  • 批准号:
    2886365
  • 财政年份:
    2023
  • 资助金额:
    $ 27.93万
  • 项目类别:
    Studentship
Modern Statistics and Statistical Machine Learning
现代统计学和统计机器学习
  • 批准号:
    2886852
  • 财政年份:
    2023
  • 资助金额:
    $ 27.93万
  • 项目类别:
    Studentship
Next-Generation Algorithms in Statistical Genetics Based on Modern Machine Learning
基于现代机器学习的下一代统计遗传学算法
  • 批准号:
    10714930
  • 财政年份:
    2023
  • 资助金额:
    $ 27.93万
  • 项目类别:
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
  • 批准号:
    10590913
  • 财政年份:
    2023
  • 资助金额:
    $ 27.93万
  • 项目类别:
Unravel machine learning blackboxes -- A general, effective and performance-guaranteed statistical framework for complex and irregular inference problems in data science
揭开机器学习黑匣子——针对数据科学中复杂和不规则推理问题的通用、有效和性能有保证的统计框架
  • 批准号:
    2311064
  • 财政年份:
    2023
  • 资助金额:
    $ 27.93万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了