PREEVENTS Track 2: Collaborative Research: A Dynamic Unified Framework for Hurricane Storm Surge Analysis and Prediction Spanning across the Coastal Floodplain and Ocean

预防事件轨道 2:协作研究:跨沿海洪泛区和海洋的飓风风暴潮分析和预测的动态统一框架

基本信息

  • 批准号:
    1854991
  • 负责人:
  • 金额:
    $ 31.03万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-15 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Storm-driven coastal flooding is influenced by many physical processes including riverine discharges, regional rainfall, wind, atmospheric pressure, wave-induced set up, wave runup, tides, and fluctuating baseline ocean water levels. Operational storm surge models such as those used by NOAA's Ocean Prediction Center (Extratropical Surge and Tide Operational Forecast System) incorporate a variety of these processes including riverine discharges, atmospheric winds and pressure, waves, and tides. However, coastal surge models do not typically incorporate the impact of rainfall across the coastal floodplain nor fluctuations in background water levels due to the oceanic density structure. Nonetheless, the floodplain hydrology and ocean baseline water levels provide vital controls in riverine and estuarine environments (e.g., the dramatic effect seen in the Houston metropolitan region during Hurricane Harvey in 2017 and in North Carolina during Hurricane Florence in 2018). Recent events have shown that a unified approach that incorporates all the relevant physical processes is critical for accurate predictive simulations of coastal flooding due to extreme events. This project will tackle this challenge by melding hydrology, hydraulics, and waves into a dynamic unified computational framework that uses unstructured meshes spanning from the deep ocean to upland areas and across the coastal floodplain. Improved capacity for flood risk managers, the insurance industry, and city planners to evaluate flood risk across the entire coastal floodplain. Improved models will lead to better guidance on development and construction practices, will help make cities more resilient and will reduce risk for coastal populations and infrastructure. In addition, this work will improve coastal flood forecasting enabling federal, state, and local disaster managers, to optimize issuing warnings for evacuation and emergency planning. The collaboration between the ocean circulation, coastal hydrodynamics, and hydrology modeling communities fostered by this project will help support ambitious projects such as NOAA's National Water Center's National Integrated Water Model, which is at the preliminary stages of integration of hydrology and coastal hydrodynamics. Training of students at the intersection of hydrology, coastal hydrodynamics, physical oceanography, and computational mathematics, to help develop and apply ever-more complex and advanced models in academia, government and industry.The proposed unified framework will improve the predicted water level gradient and flows throughout the coastal floodplain by integrally considering the rainfall-driven hydrology within the coastal floodplain as well as improving the background open ocean water level. Well-developed but coarse global ocean models will be heterogeneously coupled to high-resolution 2D shallow water equation models in order to account for large-scale baroclinic ocean processes that impact coastal water levels. Interface strategies and conditions between heterogeneous physics will be developed that allow the interfaces to move in time and space for the range of physics from dry to surface runoff to pressurized flow. Applying the right physics and associated mathematical models as the storms evolve will result in more robust and accurate models, as well as much more efficient models. This will dynamically account for the hydrologic - hydrodynamic interaction of water across the floodplain. Dynamic load balancing will account for widely varying computational (CPU) costs for each set of physics and the dynamic migration of the physics will be implemented within the heterogeneous parallel computing environment.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
风暴引发的沿海洪水受许多物理过程的影响,包括河流流量、区域降雨量、风、大气压力、波浪诱导的建立、海浪抬高、潮汐和基线海洋水位的波动。业务风暴潮模型,如NOAA海洋预测中心(温带风暴潮和潮汐业务预报系统)使用的模型,包含了各种这样的过程,包括河流排放、大气风压、海浪和潮汐。然而,海岸涌浪模型通常不包括沿海泛滥平原降雨的影响,也不包括由于海洋密度结构而引起的背景水位波动。尽管如此,泛滥平原水文和海洋基线水位在河流和河口环境中提供了至关重要的控制(例如,2017年哈维飓风期间休斯顿大都市区和2018年佛罗伦萨飓风期间北卡罗来纳州出现的戏剧性影响)。最近的事件表明,对于准确模拟极端事件引起的沿海洪灾,统一的方法包括所有相关的物理过程是至关重要的。该项目将通过将水文学、水力学和波浪融合到一个动态的统一计算框架中来应对这一挑战,该框架使用从深海到高地地区和沿海泛滥平原的非结构化网格。提高了洪水风险管理人员、保险业和城市规划者评估整个沿海泛滥平原洪水风险的能力。改进的模型将导致对开发和建设实践的更好指导,将有助于提高城市的弹性,并将降低沿海人口和基础设施的风险。此外,这项工作将改进沿海洪水预报,使联邦、州和地方灾害管理人员能够优化疏散和应急计划的警告发布。该项目促进了海洋环流、沿海水动力学和水文模型界之间的合作,这将有助于支持雄心勃勃的项目,如NOAA的国家水中心的国家综合水模型,该模型正处于水文学和沿海水动力学综合的初步阶段。在水文学、海岸水动力学、物理海洋学和计算数学的交叉领域培养学生,以帮助开发和应用学术界、政府和工业界日益复杂和先进的模型。拟议的统一框架将通过综合考虑沿海滩地内降雨驱动的水文以及改善背景开阔海洋水位来改进预测的水位梯度和整个沿海滩地的流动。发展良好但粗糙的全球海洋模式将与高分辨率二维浅水方程模式非均匀耦合,以考虑影响沿海水位的大规模斜压海洋过程。将制定非均质物理之间的界面战略和条件,允许界面在从干燥到地表径流再到加压流动的物理范围内在时间和空间上移动。随着风暴的演变,应用正确的物理和相关的数学模型将产生更健壮、更准确的模型,以及更高效的模型。这将动态地解释洪水泛滥平原上水的水文-水动力相互作用。动态负载平衡将解决每个物理集合的计算(CPU)成本差异很大的问题,物理的动态迁移将在异构并行计算环境中实施。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Time Step Restrictions for Strong-Stability-Preserving Multistep Runge–Kutta Discontinuous Galerkin Methods
  • DOI:
    10.1007/s10915-021-01635-4
  • 发表时间:
    2021-09
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    B. Yeager;E. Kubatko;Dylan Wood
  • 通讯作者:
    B. Yeager;E. Kubatko;Dylan Wood
A one-dimensional local discontinuous Galerkin Richards’ equation solution with dual-time stepping
  • DOI:
    10.1007/s10596-021-10098-3
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Yilong Xiao;E. Kubatko;Colton J. Conroy
  • 通讯作者:
    Yilong Xiao;E. Kubatko;Colton J. Conroy
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ethan Kubatko其他文献

Verification and Validation of a Discontinuous Galerkin Model for Shallow Water Flow and Transport
浅水流动和输送的不连续伽辽金模型的验证和确认
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ethan Kubatko;Shintaro Bunya;et. al.
  • 通讯作者:
    et. al.

Ethan Kubatko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ethan Kubatko', 18)}}的其他基金

Collaborative Research: Computational Methods for Simulating Complex Coastal Watersheds and Floodplains
合作研究:模拟复杂沿海流域和洪泛区的计算方法
  • 批准号:
    1217218
  • 财政年份:
    2012
  • 资助金额:
    $ 31.03万
  • 项目类别:
    Continuing Grant
Oil spill transport modeling in shelf, estuary, and intracoastal regions
陆架、河口和沿海地区的溢油输送模型
  • 批准号:
    1045151
  • 财政年份:
    2010
  • 资助金额:
    $ 31.03万
  • 项目类别:
    Standard Grant
CMG Collaborative Research: Simulation of Wave-Current Interaction Using Novel, Coupled Non-Phase and Phase Resolving Wave and Current Models
CMG 合作研究:使用新型耦合非相位和相位解析波流模型模拟波流相互作用
  • 批准号:
    1025527
  • 财政年份:
    2010
  • 资助金额:
    $ 31.03万
  • 项目类别:
    Standard Grant
Collaborative Research: Computational Methods for Coupled Wave, Current, Sediment Transport and Morphological Evolution
合作研究:耦合波、海流、泥沙输送和形态演化的计算方法
  • 批准号:
    0915118
  • 财政年份:
    2009
  • 资助金额:
    $ 31.03万
  • 项目类别:
    Continuing Grant

相似海外基金

PREEVENTS: Track 2: Collaborative Research: Defining precursors of ground failure: a multiscale framework for early landslide prediction through geomechanics and remote sensing
预防措施:轨道 2:协作研究:定义地面破坏的前兆:通过地质力学和遥感进行早期滑坡预测的多尺度框架
  • 批准号:
    2023112
  • 财政年份:
    2020
  • 资助金额:
    $ 31.03万
  • 项目类别:
    Continuing Grant
PREEVENTS Track 2: Collaborative Research: Predicting Hurricane Risk along the United States East Coast in a Changing Climate
预防事件轨道 2:合作研究:预测气候变化中美国东海岸的飓风风险
  • 批准号:
    1854956
  • 财政年份:
    2019
  • 资助金额:
    $ 31.03万
  • 项目类别:
    Continuing Grant
PREEVENTS Track 2: Collaborative Research: Multi-scale processes impacting the predictability of severe convective weather events
预防事件轨道 2:协作研究:影响强对流天气事件可预测性的多尺度过程
  • 批准号:
    1854966
  • 财政年份:
    2019
  • 资助金额:
    $ 31.03万
  • 项目类别:
    Continuing Grant
PREEVENTS Track 2: Collaborative Research: Geomorphic Versus Climatic Drivers of Changing Coastal Flood Risk
预防事件轨道 2:协作研究:变化的沿海洪水风险的地貌与气候驱动因素
  • 批准号:
    1854946
  • 财政年份:
    2019
  • 资助金额:
    $ 31.03万
  • 项目类别:
    Continuing Grant
PREEVENTS Track 2: Collaborative Research: Improving High-Impact Hail Event Forecasts by Linking Hail Environments and Modeled Hailstorm Processes
预防轨道 2:协作研究:通过将冰雹环境与冰雹过程模型联系起来改进高影响冰雹事件预报
  • 批准号:
    1855054
  • 财政年份:
    2019
  • 资助金额:
    $ 31.03万
  • 项目类别:
    Continuing Grant
PREEVENTS Track 2: Collaborative Research: Geomorphic Versus Climatic Drivers of Changing Coastal Flood Risk
预防事件轨道 2:协作研究:变化的沿海洪水风险的地貌与气候驱动因素
  • 批准号:
    2013280
  • 财政年份:
    2019
  • 资助金额:
    $ 31.03万
  • 项目类别:
    Continuing Grant
Collaborative Research: PREEVENTS Track 2: Quantifying the Risk of Extreme Solar Eruptions (QUEST)
合作研究:预防轨道 2:量化极端太阳喷发的风险 (QUEST)
  • 批准号:
    1854790
  • 财政年份:
    2019
  • 资助金额:
    $ 31.03万
  • 项目类别:
    Continuing Grant
PREEVENTS Track 2: Collaborative Research: Predicting Hurricane Risk along the United States East Coast in a Changing Climate
预防事件轨道 2:合作研究:预测气候变化中美国东海岸的飓风风险
  • 批准号:
    1854929
  • 财政年份:
    2019
  • 资助金额:
    $ 31.03万
  • 项目类别:
    Continuing Grant
PREEVENTS Track 2: Collaborative Research: Flash droughts: process, prediction, and the central role of vegetation in their evolution.
预防事件轨道 2:合作研究:突发干旱:过程、预测以及植被在其演化中的核心作用。
  • 批准号:
    1854945
  • 财政年份:
    2019
  • 资助金额:
    $ 31.03万
  • 项目类别:
    Continuing Grant
PREEVENTS Track 2: Collaborative Research: Predicting Hurricane Risk along the United States East Coast in a Changing Climate
预防事件轨道 2:合作研究:预测气候变化中美国东海岸的飓风风险
  • 批准号:
    1854993
  • 财政年份:
    2019
  • 资助金额:
    $ 31.03万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了