Degenerate Diffusions and Related Heat Kernel Estimates

简并扩散和相关的热核估计

基本信息

  • 批准号:
    1855523
  • 负责人:
  • 金额:
    $ 12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-08-01 至 2023-07-31
  • 项目状态:
    已结题

项目摘要

This research project lies at the intersection of several areas of mathematics: probability, analysis and differential geometry. The PI will work on problems related to diffusion processes and their heat kernels in degenerate geometric settings, merging tools of the three mentioned areas. Some of the problems are pertinent to various applied fields, including mathematical finance, control of dynamic systems, machine learning, and others. The PI will integrate her research expertise into teaching probability courses, mentoring students, and organizing conferences. The PI will also continue her effort in encouraging women and other underrepresented groups in math. The project focuses on random diffusion processes that are subject to a priori non-holonomic constraints which can perfectly fit into the framework of sub-Riemannian geometry. A recurring theme of proposed topics is the interaction between the underlying geometric structure and the limiting behaviors of the associated Markov processes. The project is primarily concerned with three topics. The first is to study stochastic processes and the explicit heat kernel on sub-Riemannian model spaces, which provides great examples and strong intuition for the understanding of general cases. The second topic concerns the limiting behaviors -in both small and large time scale -of a general degenerate diffusion process, which reflect the underlying geometric information of geodesic and Ricci curvature bound respectively. The third topic is to study the heat content of bounded domains in a sub-Riemannian manifold, which reveals the geometry of the domain such as surface area and total mean curvature of the boundary.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个研究项目位于数学的几个领域的交叉点:概率,分析和微分几何。PI将研究与退化几何环境中的扩散过程及其热核相关的问题,合并上述三个领域的工具。其中一些问题与各种应用领域有关,包括数学金融,动态系统控制,机器学习等。PI将把她的研究专长融入概率课程教学,指导学生和组织会议。PI还将继续努力鼓励妇女和其他代表性不足的群体参与数学。该项目侧重于随机扩散过程,这些过程受到先验非完整约束,可以完美地融入亚黎曼几何的框架。一个经常出现的主题是潜在的几何结构和相关的马尔可夫过程的限制行为之间的相互作用。该项目主要涉及三个主题。第一个是研究次黎曼模型空间上的随机过程和显式热核,这为理解一般情况提供了很好的例子和很强的直观性。第二个主题是关于一般退化扩散过程在小时间尺度和大时间尺度上的极限行为,它们分别反映了测地线和Ricci曲率界的几何信息。第三个课题是研究亚黎曼流形中有界区域的热含量,揭示区域的几何形状,如表面面积和边界的总平均曲率。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Parabolic Anderson model on Heisenberg groups: The Itô setting
海森堡群的抛物线安德森模型:Ità 设置
  • DOI:
    10.1016/j.jfa.2023.109920
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Baudoin, Fabrice;Ouyang, Cheng;Tindel, Samy;Wang, Jing
  • 通讯作者:
    Wang, Jing
Bounds for exit times of Brownian motion and the first Dirichlet eigenvalue for the Laplacian
布朗运动的退出时间和拉普拉斯的第一个狄利克雷特征值的界限
Quaternionic stochastic areas
四元数随机区域
Improved Upper Bounds for the Hot Spots Constant of Lipschitz Domains
改进的 Lipschitz 域热点常数的上限
  • DOI:
    10.1007/s11118-022-10001-4
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    Mariano, Phanuel;Panzo, Hugo;Wang, Jing
  • 通讯作者:
    Wang, Jing
Asymptotic windings of the block determinants of a unitary Brownian motion and related diffusions
酉布朗运动的块行列式的渐近缠绕和相关扩散
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jing Wang其他文献

Highly reliable dc SQUIDs in temperature with laser-MBE YBa2Cu3OX thin films
使用激光 MBE YBa2Cu3OX 薄膜在温度下实现高度可靠的直流 SQUID
  • DOI:
    10.1016/s0038-1098(03)00213-8
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Jing Wang;B. Han;F. Chen;T. Zhao;Fengzhi Xu;Yue;G. H. Chen;Hui‐bin Lu;Q. Yang;T. Cui
  • 通讯作者:
    T. Cui
4"-O-Alkylated alpha-Galactosylceramide Analogues as iNKT-Cell Antigens: Synthetic, Biological, and Structural Studies.
4"-O-烷基化 α-半乳糖神经酰胺类似物作为 iNKT 细胞抗原:合成、生物学和结构研究。
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Janssens;A. Bitra;Jing Wang;T. Decruy;K. Venken;J. V. D. Eycken;D. Elewaut;D. Zajonc;S. V. Calenbergh
  • 通讯作者:
    S. V. Calenbergh
A novel approach for texture shape recovery
一种纹理形状恢复的新方法
Role of platelet infiltration as independent prognostic marker for gastric adenocarcinomas
血小板浸润作为胃腺癌独立预后标志物的作用
Studying the Sent-Down Internet: roundtable on research methods
研究下乡互联网:研究方法圆桌会议
  • DOI:
    10.1080/17544750.2015.991370
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Elisa Oreglia;J. Qiu;W. Bu;Barbara Schulte;Jing Wang;C. Wallis;Baohua Zhou
  • 通讯作者:
    Baohua Zhou

Jing Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jing Wang', 18)}}的其他基金

Collaborative Research: FuSe: Thermal Co-Design for Heterogeneous Integration of Low Loss Electromagnetic and RF Systems (The CHILLERS)
合作研究:FuSe:低损耗电磁和射频系统异构集成的热协同设计(CHILLERS)
  • 批准号:
    2329207
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Stochastic processes in sub-Riemannian geometry
亚黎曼几何中的随机过程
  • 批准号:
    2246817
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
MRI: Acquisition of a Multi-Material Additive Manufacturing Platform for Multi-Disciplinary Research and Education
MRI:收购用于多学科研究和教育的多材料增材制造平台
  • 批准号:
    1726875
  • 财政年份:
    2017
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
I-Corps Teams: Pathways to Market of Piezoelectric Elastomer Composites for Additive Manufacturing of Flexible 3D Conformal Acoustic Emission and Ultrasonic Transducer Arrays
I-Corps 团队:用于柔性 3D 共形声发射和超声波换能器阵列增材制造的压电弹性体复合材料的市场之路
  • 批准号:
    1606755
  • 财政年份:
    2015
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Spline-based Empirical Likelihood and Qausi-likelihood Estimation
基于样条的经验似然和 Qausi 似然估计
  • 批准号:
    1107017
  • 财政年份:
    2011
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Antenna-Coupled ALD-Enabled Metal-Insulator-Insulator-Metal Diodes for High Responsivity and High Resolution THz/Infrared Focal Plane Arrays
GOALI/合作研究:用于高响应度和高分辨率太赫兹/红外焦平面阵列的天线耦合 ALD 金属-绝缘体-绝缘体-金属二极管
  • 批准号:
    1029067
  • 财政年份:
    2010
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Imprinting learning in Drosophila
果蝇的印记学习
  • 批准号:
    0920668
  • 财政年份:
    2009
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
GOALI/Collaborative Research: Passive, Diamagnetic Inertial Sensing Integrated with High-Sensitivity Telemetry
GOALI/合作研究:无源抗磁惯性传感与高灵敏度遥测集成
  • 批准号:
    0925929
  • 财政年份:
    2009
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant

相似海外基金

Diffusions and jump processes on groups and manifolds
群和流形上的扩散和跳跃过程
  • 批准号:
    2343868
  • 财政年份:
    2024
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
Some topics in Analysis and Probability in Metric Measure Spaces, Random Matrices, and Diffusions
度量测度空间、随机矩阵和扩散中的分析和概率中的一些主题
  • 批准号:
    2247117
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Degenerate diffusions in finite and infinite dimensions: smoothing and convergence
有限和无限维度的简并扩散:平滑和收敛
  • 批准号:
    2246491
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: Infinite horizon risk-sensitive control of diffusions with applications in stochastic networks
合作研究:无限视野风险敏感扩散控制及其在随机网络中的应用
  • 批准号:
    2216765
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Origins, Transmissions, and Diffusions of Materials from the Mount Wutai Cultural Sphere
五台山文化圈物质的起源、传承与扩散
  • 批准号:
    21H04341
  • 财政年份:
    2021
  • 资助金额:
    $ 12万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Collaborative Research: Infinite horizon risk-sensitive control of diffusions with applications in stochastic networks
合作研究:无限视野风险敏感扩散控制及其在随机网络中的应用
  • 批准号:
    2108683
  • 财政年份:
    2021
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: Numerical Methods for High-Dimensional Sticky Diffusions
合作研究:高维粘性扩散的数值方法
  • 批准号:
    2111224
  • 财政年份:
    2021
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: Numerical methods for high-dimensional sticky diffusions
合作研究:高维粘性扩散的数值方法
  • 批准号:
    2111163
  • 财政年份:
    2021
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: Infinite horizon risk-sensitive control of diffusions with applications in stochastic networks
合作研究:无限视野风险敏感扩散控制及其在随机网络中的应用
  • 批准号:
    2108682
  • 财政年份:
    2021
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Infinite-dimensional stochastic systems: stable stochastic partial differential equations, spatial branching models and population genetics, and diffusions on real trees
无限维随机系统:稳定随机偏微分方程、空间分支模型和群体遗传学以及真实树上的扩散
  • 批准号:
    545729-2020
  • 财政年份:
    2021
  • 资助金额:
    $ 12万
  • 项目类别:
    Postdoctoral Fellowships
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了