Absoluteness, Potential Scott Sentences, and Stability in Model Theory
模型理论中的绝对性、潜在斯科特句子和稳定性
基本信息
- 批准号:1855789
- 负责人:
- 金额:$ 21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research is in model theory, which is a branch of mathematical logic. Much of model theory concerns the ways in which a theory, which is simply a set of sentences in a formal language controls its class of models. For many years, the PI has concentrated on mechanisms by which a theory can either admit or forbid certain combinatorial configurations in its models, and the proposed research is to continue these investigations in several disparate contexts. In some cases, this investigation melds well with computational learning theory. As one example, if a theory forbids the independence property, then all of the concepts i.e., definable sets, arising in the models of the theory are PAC learnable.In more detail, potential canonical Scott sentences have proved to be a useful tool in determining the Borel complexity of invariant classes of countable structures and we intend to streamline these methods by exploring thickness and groundedness of classes of models. It is hoped that the Borel complexity of every mutually algebraic theory can be computed. Theories with non-maximal uncountable spectrum are classifiable. Recent technical results about the existence of prime models make it tractable to settle Vaught's conjecture for classifiable theories and possibly for superstable theories as well. In first order logic, aleph1-categoricity of a theory is an absolute notion, as can be seen by the Baldwin-Lachlan characterization of aleph1-categoricity. The PI proposes to determine whether a similar characterization can be found for aleph1-categoricity of sentences of L(omega1, omega), or equivalently for classes of atomic models. Specifically, the proposed research is to determine whether aleph1-categoricity is absolute for classes of atomic models. The PI also proposes to use previous results about mutually algebraic structures to study expansions of weakly minimal structures that preserve stability.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
模型论是数理逻辑的一个分支。 模型论的大部分内容都涉及理论控制模型类的方式,理论只是形式语言中的一组句子。 多年来,PI一直专注于一个理论可以在其模型中允许或禁止某些组合配置的机制,而拟议的研究是在几个不同的背景下继续这些调查。 在某些情况下,这项研究与计算学习理论融合得很好。 作为一个例子,如果一个理论禁止独立属性,那么所有的概念,即,可定义的集合,在理论的模型中产生的PAC learnable.In更详细地说,潜在的规范斯科特句子已被证明是一个有用的工具,在确定可数结构的不变类的博雷尔复杂性,我们打算精简这些方法,探索厚度和crowdedness类的模型。 人们希望每一个互代数理论的Borel复杂度都能被计算出来。 具有非极大不可数谱的理论是可分类的。 最近关于素模型存在性的技术结果使得解决Vaught猜想对于可分类理论和可能对于超稳定理论来说都是容易的。 在一阶逻辑中,理论的aleph 1-范畴性是一个绝对的概念,这可以从Baldwin-Lachlan对aleph 1-范畴性的刻画中看出。 PI建议确定是否可以找到类似的表征为aleph 1-范畴的句子L(ω 1,ω),或等价的类原子模型。 具体而言,拟议的研究是确定是否aleph 1-范畴是绝对的类的原子模型。PI还建议使用以前的结果相互代数结构的研究弱最小结构的扩展,保持stability.This奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Uniformly Bounded Arrays and Mutually Algebraic Structures
一致有界数组和互代数结构
- DOI:10.1215/00294527-2020-0004
- 发表时间:2020
- 期刊:
- 影响因子:0.7
- 作者:Laskowski, Michael C.;Terry, Caroline A.
- 通讯作者:Terry, Caroline A.
COUNTABLE MODELS OF THE THEORIES OF BALDWIN–SHI HYPERGRAPHS AND THEIR REGULAR TYPES
鲍德温·希超图理论的可数模型及其正则类型
- DOI:10.1017/jsl.2019.28
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:GUNATILLEKA, DANUL K.
- 通讯作者:GUNATILLEKA, DANUL K.
Theories with few non-algebraic types over models, and their decompositions
模型上很少有非代数类型的理论及其分解
- DOI:10.1090/proc/15956
- 发表时间:2022
- 期刊:
- 影响因子:1
- 作者:Braunfeld, Samuel;Laskowski, Michael
- 通讯作者:Laskowski, Michael
Worst-case expansions of complete theories
完整理论的最坏情况扩展
- DOI:10.2140/mt.2022.1.15
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Braunfeld, Samuel;Laskowski, Michael C.
- 通讯作者:Laskowski, Michael C.
Mutual algebraicity and cellularity
相互代数性和细胞性
- DOI:10.1007/s00153-021-00804-4
- 发表时间:2022
- 期刊:
- 影响因子:0.3
- 作者:Braunfeld, Samuel;Laskowski, Michael C.
- 通讯作者:Laskowski, Michael C.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Chris Laskowski其他文献
Michael Chris Laskowski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Chris Laskowski', 18)}}的其他基金
Monadic Expansions, Borel Complexity, and Absoluteness in Model Theory
模型理论中的一元展开式、Borel 复杂性和绝对性
- 批准号:
2154101 - 财政年份:2022
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Absoluteness, stability, and quantifier complexity in model theory
模型理论中的绝对性、稳定性和量词复杂性
- 批准号:
1308546 - 财政年份:2013
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
Mathematical Sciences: Inevitability in Model Theory
数学科学:模型论的必然性
- 批准号:
9403701 - 财政年份:1994
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
- 批准号:
9107902 - 财政年份:1991
- 资助金额:
$ 21万 - 项目类别:
Fellowship Award
相似国自然基金
Transient Receptor Potential 通道 A1在膀胱过度活动症发病机制中的作用
- 批准号:30801141
- 批准年份:2008
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Unlocking the potential of mini-MASS in UK waters
释放英国水域迷你 MASS 的潜力
- 批准号:
10109319 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Launchpad
The Rare Earth Potential of the Gascoyne Region of Western Australia
西澳大利亚加斯科因地区的稀土潜力
- 批准号:
LP230100173 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Linkage Projects
Identifying potential trade-offs of adapting to climate change
确定适应气候变化的潜在权衡
- 批准号:
DP240100230 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Discovery Projects
Human-Robot Co-Evolution: Achieving the full potential of future workplaces
人机协同进化:充分发挥未来工作场所的潜力
- 批准号:
DP240100938 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Discovery Projects
The effectiveness of public support for high-potential businesses
对高潜力企业的公共支持的有效性
- 批准号:
ES/Z50256X/1 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Research Grant
GPR35: mechanisms of action and agonism as a potential therapeutic strategy for non-alcoholic fatty liver diseases
GPR35:作为非酒精性脂肪肝疾病潜在治疗策略的作用和激动机制
- 批准号:
MR/X008827/1 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Research Grant
CAREER: Transformation potential of per- and polyfluoroalkyl substances (PFAS) in drinking water distribution systems
职业:全氟烷基物质和多氟烷基物质 (PFAS) 在饮用水分配系统中的转化潜力
- 批准号:
2338480 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Continuing Grant
I-Corps: Translation Potential of an Objective and Customizable Concussion Assessment and Rehabilitation Tool for Specialized Populations
I-Corps:针对特殊人群的客观且可定制的脑震荡评估和康复工具的转化潜力
- 批准号:
2348910 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of Cellulose-Nanofiber-Based Surface Agents for Enhancing Bioactive Filtration Efficiency
I-Corps:纤维素纳米纤维基表面剂在提高生物活性过滤效率方面的转化潜力
- 批准号:
2401619 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
$ 21万 - 项目类别:
Standard Grant