Monadic Expansions, Borel Complexity, and Absoluteness in Model Theory

模型理论中的一元展开式、Borel 复杂性和绝对性

基本信息

项目摘要

This research project is in model theory, which is a branch of mathematical logic. Much of model theory concerns the ways in which a theory, which is simply a set of sentences in a formal language, controls its class of models. The PI has previously investigated on mechanisms by which a theory can either admit or forbid certain combinatorial configurations in its models; this project continues these investigations in several contexts. In some cases, this investigation melds well with computational learning theory. As one example, if a theory forbids the independence property, then all the concepts i.e., definable sets, arising in the models of the theory conform to the probably approximately correct (PAC) learning framework. This project will provide research training opportunities for undergraduate and graduate students.In more detail, the PI has noted a strong connection between the complexity of hereditary classes C of finite structures and monadic expansions of infinite models of Th(C). There is a hierarchy of dividing lines, such as monadic NFCP, monadic stability, and monadic NIP. Working with Braunfeld, the PI has multiple characterizations of a model of Th(C) being monadically NIP. The project expects to show that if some model of Th(C) is not monadically NIP, then the class is wild, e.g., the growth rate of unlabelled structures in C is superexponetial and the class is not n-wqo for some integer n. Potential canonical Scott sentences have proved to be a useful tool in determining the Borel complexity of invariant classes of countable structures and the research intends to streamline these methods by exploring thickness and groundedness of classes of models. The project aims to compute the Borel complexity of every mutually algebraic theory. Theories with non-maximal uncountable spectrum are classifiable. Recent technical results about the existence of prime models make it tractable to settle Vaught's conjecture for classifiable theories and possibly for superstable theories as well. In first order logic, aleph1-categoricity of a theory is an absolute notion, as can be seen by the Baldwin-Lachlan characterization of aleph1-categoricity. The PI aims to determine whether a similar characterization can be found for aleph1-categoricity of sentences of L(omega1, omega), or equivalently for classes of atomic models. Specifically, the project intends to determine whether aleph1-categoricity is absolute for classes of atomic models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本研究课题属于数理逻辑的一个分支--模型论。模型论的大部分内容都涉及理论控制模型类的方式,理论只是形式语言中的一组句子。PI以前曾研究过一个理论在其模型中允许或禁止某些组合配置的机制;这个项目在几个背景下继续这些研究。在某些情况下,这项研究与计算学习理论融合得很好。作为一个例子,如果一个理论禁止独立属性,那么所有的概念,即,可定义集合,出现在理论模型符合可能近似正确(PAC)的学习框架。该项目将为本科生和研究生提供研究培训机会。更详细地说,PI已经注意到有限结构的遗传类C的复杂性与Th(C)的无限模型的一元展开之间的密切联系。 有一系列的分界线,如一元NFCP、一元稳定性和一元NIP。 与Braunfeld合作,PI具有Th(C)是单NIP的模型的多个特征。 该项目希望表明,如果Th(C)的某些模型不是Monadically NIP,则该类是野生的,例如,C中未标记结构的增长率是超指数的,并且对于某个整数n,类不是n-wqo。 潜在的规范斯科特句子已被证明是一个有用的工具,在确定可数结构的不变类的博雷尔复杂性和研究打算简化这些方法,探索厚度和类的模型。该项目旨在计算每个互代数理论的Borel复杂度。 具有非极大不可数谱的理论是可分类的。最近关于素模型存在性的技术结果使得解决Vaught猜想对于可分类理论和可能对于超稳定理论来说都是容易的。在一阶逻辑中,理论的aleph 1-范畴性是一个绝对的概念,这可以从Baldwin-Lachlan对aleph 1-范畴性的刻画中看出。PI的目的是确定是否可以找到一个类似的表征aleph 1-范畴的句子L(ω 1,ω),或等价的类原子模型。具体来说,该项目旨在确定aleph 1-categoricity是否是绝对的原子模型类。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Chris Laskowski其他文献

Michael Chris Laskowski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Chris Laskowski', 18)}}的其他基金

Absoluteness, Potential Scott Sentences, and Stability in Model Theory
模型理论中的绝对性、潜在斯科特句子和稳定性
  • 批准号:
    1855789
  • 财政年份:
    2019
  • 资助金额:
    $ 44万
  • 项目类别:
    Continuing Grant
Absoluteness, stability, and quantifier complexity in model theory
模型理论中的绝对性、稳定性和量词复杂性
  • 批准号:
    1308546
  • 财政年份:
    2013
  • 资助金额:
    $ 44万
  • 项目类别:
    Continuing Grant
Structure Theorems in Model Theory
模型论中的结构定理
  • 批准号:
    0901336
  • 财政年份:
    2009
  • 资助金额:
    $ 44万
  • 项目类别:
    Standard Grant
Structure Theorems in Model Theory
模型论中的结构定理
  • 批准号:
    0600217
  • 财政年份:
    2006
  • 资助金额:
    $ 44万
  • 项目类别:
    Standard Grant
Topics in Model Theory
模型理论主题
  • 批准号:
    0300080
  • 财政年份:
    2003
  • 资助金额:
    $ 44万
  • 项目类别:
    Continuing Grant
Topics in Model Theory
模型理论主题
  • 批准号:
    0071746
  • 财政年份:
    2000
  • 资助金额:
    $ 44万
  • 项目类别:
    Continuing Grant
Topics in Model Theory
模型理论主题
  • 批准号:
    9704364
  • 财政年份:
    1997
  • 资助金额:
    $ 44万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Inevitability in Model Theory
数学科学:模型论的必然性
  • 批准号:
    9403701
  • 财政年份:
    1994
  • 资助金额:
    $ 44万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
  • 批准号:
    9107902
  • 财政年份:
    1991
  • 资助金额:
    $ 44万
  • 项目类别:
    Fellowship Award

相似海外基金

Harmonic and functional analysis of wavelet and frame expansions
小波和框架展开的调和和泛函分析
  • 批准号:
    2349756
  • 财政年份:
    2024
  • 资助金额:
    $ 44万
  • 项目类别:
    Standard Grant
Delineating the functional impact of recurrent repeat expansions in ALS using integrative multiomic analysis
使用综合多组学分析描述 ALS 中反复重复扩增的功能影响
  • 批准号:
    10776994
  • 财政年份:
    2023
  • 资助金额:
    $ 44万
  • 项目类别:
Spillover Effects of Medicaid Dental Coverage Expansions on Health Status
医疗补助牙科覆盖范围扩大对健康状况的溢出效应
  • 批准号:
    10590847
  • 财政年份:
    2023
  • 资助金额:
    $ 44万
  • 项目类别:
Empirical study of the political effect on institutional expansions in secondary education: A case of the Philippines
政治对中等教育制度扩张影响的实证研究:以菲律宾为例
  • 批准号:
    22K13394
  • 财政年份:
    2022
  • 资助金额:
    $ 44万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The Effects of Scholarship on Student's Learning Behavior Focusing on PreferenceDevelopments and Expansions of Behavioral Economics Approach
奖学金对学生学习行为的影响关注偏好行为经济学方法的发展和扩展
  • 批准号:
    22K13722
  • 财政年份:
    2022
  • 资助金额:
    $ 44万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Novel approaches to identify tandem repeat expansions in neurodegenerative disease
识别神经退行性疾病串联重复扩增的新方法
  • 批准号:
    10440935
  • 财政年份:
    2022
  • 资助金额:
    $ 44万
  • 项目类别:
In Silico Drug Design Targeting RNA Repeat Expansions
针对 RNA 重复扩增的计算机药物设计
  • 批准号:
    10439166
  • 财政年份:
    2022
  • 资助金额:
    $ 44万
  • 项目类别:
In Silico Drug Design Targeting RNA Repeat Expansions
针对 RNA 重复扩增的计算机药物设计
  • 批准号:
    10796593
  • 财政年份:
    2022
  • 资助金额:
    $ 44万
  • 项目类别:
Novel approaches to identify tandem repeat expansions in neurodegenerative disease
识别神经退行性疾病串联重复扩增的新方法
  • 批准号:
    10593996
  • 财政年份:
    2022
  • 资助金额:
    $ 44万
  • 项目类别:
The impact of range expansions on genomic parasitism in Lepidoptera
范围扩展对鳞翅目基因组寄生的影响
  • 批准号:
    2750915
  • 财政年份:
    2022
  • 资助金额:
    $ 44万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了