Understanding the Structure and Dynamics of Solvated Electrons Using Ultrafast Spectroscopy and Quantum Simulation Methods
使用超快光谱和量子模拟方法了解溶剂化电子的结构和动力学
基本信息
- 批准号:1856050
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project funded by the Chemical Structure, Dynamics and Mechanisms-A Program (CSDM-A) of the Chemistry Division, Professor Benjamin J. Schwartz and his students at the University of California-Los Angeles are using a combination of experimental and theoretical techniques to unravel the structure and behavior of solvated electrons. Salt water is a common example of an electrolyte, which contains dissolved positively charged cations (sodium, Na+) and negatively anions (chloride, Cl-). Under certain circumstances, it is possible for electrons (e-) to be dissolved in a liquid. Such solutions are more difficult to understand and predict, because electrons are thousands of times less massive than atoms and molecules, and are much more mobile. The Schwartz group is using lasers which produce extremely short pulses of light (30 - 40 quadrillionths of a second) to capture the motions and energies of these fast moving electrons. The experimental results are being compared with quantum mechanical calculations (quantum mechanics is a type of math that deals with extremely small objects like electrons, atoms, and molecules), and computer simulations of the motions of the liquid molecules that "solvate" the electron. The broader impacts of this work include a better understanding of radiation chemistry (reactions with solvated electrons make high energy radiation dangerous to living organisms) and electron transfer reactions (such as those in both biology and batteries). Because this project combines experiment and theory, undergraduate and graduate student researchers receive a rich experience in experimental chemistry, laser technology, and computer programming, all of which are increasingly valuable for the modern science workforce. The Schwartz group also works with high school teachers in the Los Angeles area to enrich their science classes through lectures and the development of experimental lesson kits.The experimental focus of the project uses ultrafast spectroscopy to study the properties of solvated electrons. Ultrafast spectroscopy takes advantages of pulses of light that are extremely short (~tens of femtoseconds), providing a means to "stop the motion" of the electrons on the time scale with which molecules move in room temperature liquids. The theoretical focus of the project is based on mixed quantum/classical simulations. Here, quantum mechanics is used to describe the properties of the solvated electrons, but the solvent molecules are treated classically. The simulations can be used to calculate the results of the ultrafast spectroscopy experiments, so that together, the combination of experiments and simulations can provide new insights into the structure and reactivity of this interesting and important chemical species. Because solvated electrons involve motions of only a single electron, they also provide a test system to compare the predictions of quantum mechanical simulations directly with the results of laboratory experiments. In addition to the training of undergraduate and graduate students, the Schwartz group also works with high school teachers in the Los Angeles area to enrich their science classes, through lectures and the development of experiment kits.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在这个由化学系化学结构,动力学和机制-A计划(CSDM-A)资助的项目中,加利福尼亚大学洛杉矶分校的Benjamin J. Schwartz教授和他的学生正在使用实验和理论技术相结合的方法来解开溶剂化电子的结构和行为。 盐水是电解质的常见示例,其含有溶解的带正电荷的阳离子(钠,Na+)和带负电荷的阴离子(氯,Cl-)。 在某些情况下,电子(e-)可以溶解在液体中。 这样的解更难理解和预测,因为电子的质量比原子和分子小几千倍,而且移动的多。 Schwartz小组正在使用产生极短光脉冲(30 - 40万亿分之一秒)的激光来捕获这些快速移动电子的运动和能量。 实验结果正在与量子力学计算进行比较(量子力学是一种处理电子、原子和分子等极小物体的数学),以及对“溶剂化”电子的液体分子运动的计算机模拟。这项工作的更广泛影响包括更好地理解辐射化学(与溶剂化电子的反应使高能辐射对生物体有危险)和电子转移反应(如生物学和电池中的反应)。由于该项目结合了实验和理论,本科生和研究生研究人员在实验化学,激光技术和计算机编程方面获得了丰富的经验,所有这些都对现代科学劳动力越来越有价值。 施瓦茨小组还与洛杉矶地区的高中教师合作,通过讲座和开发实验课程包来丰富他们的科学课程。该项目的实验重点是使用超快光谱学来研究溶剂化电子的性质。超快光谱学利用了极短(约数十飞秒)的光脉冲,提供了一种在分子在室温液体中移动的时间尺度上“停止电子运动”的方法。该项目的理论重点是基于混合量子/经典模拟。在这里,量子力学是用来描述的溶剂化电子的性质,但溶剂分子的经典处理。模拟可用于计算超快光谱实验的结果,因此,实验和模拟的结合可以为这种有趣而重要的化学物质的结构和反应性提供新的见解。由于溶剂化电子只涉及单个电子的运动,它们也提供了一个测试系统,可以直接将量子力学模拟的预测与实验室实验的结果进行比较。 除了对本科生和研究生进行培训外,Schwartz团队还与洛杉矶地区的高中教师合作,通过讲座和开发实验套件来丰富他们的科学课程。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Ab Initio Simulations of Poorly- and Well-Equilibrated (CH3CN)n¯ Cluster Anions: Assigning Experimental Photoelectron Peaks to Surface-Bound Electrons and Solvated Monomer and Dimer Anions
平衡不良和平衡良好的 (CH3CN)n 簇阴离子的从头算:将实验光电子峰分配给表面结合电子以及溶剂化单体和二聚体阴离子
- DOI:10.1021/acs.jpca.1c05855
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Narvaez, W. A.;Schwartz, B. J.
- 通讯作者:Schwartz, B. J.
The Fluxional Nature of the Hydrated Electron: Energy and Entropy Contributions to Aqueous Electron Free Energies
水合电子的通量性质:水电子自由能的能量和熵贡献
- DOI:10.1021/acs.jctc.9b00496
- 发表时间:2020-02-01
- 期刊:
- 影响因子:5.5
- 作者:Glover, William J.;Schwartz, Benjamin J.
- 通讯作者:Schwartz, Benjamin J.
How Ions Break Local Symmetry: Simulations of Polarized Transient Hole Burning for Different Models of the Hydrated Electron in Contact Pairs with Na +
离子如何打破局部对称性:模拟与 Na 接触对的水合电子的不同模型的极化瞬态烧孔
- DOI:10.1021/acs.jpclett.3c00220
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Park, Sanghyun J.;Schwartz, Benjamin J.
- 通讯作者:Schwartz, Benjamin J.
Trap-Seeking or Trap-Digging? Photoinjection of Hydrated Electrons into Aqueous NaCl Solutions
寻找陷阱还是挖掘陷阱?
- DOI:10.1021/acs.jpclett.2c02243
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Narvaez, Wilberth A.;Wu, Eric C.;Park, Sanghyun J.;Gomez, Mariah;Schwartz, Benjamin J.
- 通讯作者:Schwartz, Benjamin J.
Evaluating Simple Ab Initio Models of the Hydrated Electron: The Role of Dynamical Fluctuations
评估水合电子的简单从头算模型:动态涨落的作用
- DOI:10.1021/acs.jpcb.0c6356
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Park, S. J.;Schwartz, B. J.
- 通讯作者:Schwartz, B. J.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Schwartz其他文献
Service binding and parameter specification via the DNS (DNS SVCB and HTTPSSVC)
通过 DNS(DNS SVCB 和 HTTPSSVC)进行服务绑定和参数规范
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
E. Nygren;M. Bishop;Benjamin Schwartz - 通讯作者:
Benjamin Schwartz
CUMULATIVE ADENOMA SIZE IS ASSOCIATED WITH INCREASED RISK OF METACHRONOUS ADENOMAS: A RETROSPECTIVE STUDY
腺瘤累计大小与异时性腺瘤风险增加相关:一项回顾性研究
- DOI:
10.1016/j.gie.2025.03.588 - 发表时间:
2025-05-01 - 期刊:
- 影响因子:7.500
- 作者:
Benjamin Schwartz;Jayaram Mohan;Muhammad Alsayid - 通讯作者:
Muhammad Alsayid
Two new phreatic snails (Mollusca, Caenogastropoda, Cochliopidae) from the Edwards and Edwards-Trinity aquifers, Texas
来自德克萨斯州爱德华兹和爱德华兹-三一含水层的两种新潜水蜗牛(软体动物、Caenogastropoda、Cochliopidae)
- DOI:
10.3897/subtbiol.47.113186 - 发表时间:
2023 - 期刊:
- 影响因子:1.1
- 作者:
Kathryn E. Perez;Yamileth Guerrero;Roel Castañeda;Peter H. Diaz;R. Gibson;Benjamin Schwartz;Benjamin T. Hutchins - 通讯作者:
Benjamin T. Hutchins
Tu1250: PATIENTS WITH AUTOIMMUNE HEPATITIS AND NONALCOHOLIC FATTY LIVER DISEASE: CHARACTERISTICS, TREATMENT, AND OUTCOMES
- DOI:
10.1016/s0016-5085(22)62178-4 - 发表时间:
2022-05-01 - 期刊:
- 影响因子:
- 作者:
Jessica Strzepka;Benjamin Schwartz;Costica Aloman;Nancy Reau - 通讯作者:
Nancy Reau
Transitions In Hemometabolic Related Cardiogenic Shock
- DOI:
10.1016/j.cardfail.2020.09.166 - 发表时间:
2020-10-01 - 期刊:
- 影响因子:
- 作者:
Jaime Hernandez-Montfort;Katherine L. Thayer;Benjamin Schwartz;Arthur R. Garan;Claudius Mahr;Shashank Sihna;Daniel Burkhoff;Navin K. Kapur - 通讯作者:
Navin K. Kapur
Benjamin Schwartz的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Schwartz', 18)}}的其他基金
The Behavior of Solvated Electrons in the Presence of Electrolytes: Using Simulation and Experiment to Determine the Hydrated Electron's Structure from Competitive Ion Pairing
电解质存在下溶剂化电子的行为:利用模拟和实验从竞争性离子对确定水合电子的结构
- 批准号:
2247583 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
The Effects of Driving Force, Morphology and Anion Separation on Carrier Mobility in Doped Conjugated Polymers
驱动力、形态和阴离子分离对掺杂共轭聚合物中载流子迁移率的影响
- 批准号:
2105896 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Understanding the Structure and Dynamics of Solvated Electrons Using Ultrafast Spectroscopy and Mixed Quantum/Classical Molecular Dynamics Simulation
使用超快光谱和混合量子/经典分子动力学模拟了解溶剂化电子的结构和动力学
- 批准号:
1565434 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
UNS: Taking Advantage of Metal Interpenetration to Improve the Performance of Conjugated Polymer/Fullerene-Based Photovoltaics
UNS:利用金属互穿来提高共轭聚合物/富勒烯基光伏器件的性能
- 批准号:
1510353 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Understanding the Effects of Liquid Structure on Chemical Bonds and Solvated Electrons Using Ultrafast Spectroscopy and Mixed Quantum/Classical Molecular Dynamics Simulation
使用超快光谱和混合量子/经典分子动力学模拟了解液体结构对化学键和溶剂化电子的影响
- 批准号:
1212951 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Dissertation Research: Ecosystem scale abiotic and biotic drivers of food web structure in deep phreatic aquifers
论文研究:深层潜水层食物网结构的生态系统规模非生物和生物驱动因素
- 批准号:
1210270 - 财政年份:2012
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Chemical Bond Breaking and the Role of Cavities in Solution Studied Using Femtosecond Spectroscopy and Mixed Quantum/Classical Molecular Dynamics Simulation
使用飞秒光谱和混合量子/经典分子动力学模拟研究化学键断裂和溶液中空腔的作用
- 批准号:
0908548 - 财政年份:2009
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Understanding Charge Transfer and Chemical Bond Breaking in Solution Using Femtosecond Spectroscopy and Full CI Mixed Quantum/Classical Molecular Dynamics Simulations
使用飞秒光谱和完整 CI 混合量子/经典分子动力学模拟了解溶液中的电荷转移和化学键断裂
- 批准号:
0603766 - 财政年份:2006
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CRC: Using Self-Organization to Control Morphology in Semiconducting Polymers
CRC:利用自组织控制半导体聚合物的形态
- 批准号:
0527015 - 财政年份:2005
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Controlling the Morphology and Electronic Properties of Conjugated Polymer/Metal Interfaces
控制共轭聚合物/金属界面的形态和电子特性
- 批准号:
0305254 - 财政年份:2003
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Understanding and Harnessing the Dynamics of Complex Fluid-Structure Interactions
职业:理解和利用复杂流固相互作用的动力学
- 批准号:
2237542 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Is snail mucus useful for understanding the complex intertidal community structure and dynamics?
蜗牛粘液对于理解复杂的潮间带群落结构和动态有用吗?
- 批准号:
20K15874 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Understanding the Network Structure and Dynamics of Cryptoasset's Transactions at a Global Scale
了解全球范围内加密资产交易的网络结构和动态
- 批准号:
19K22032 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Development of innovative high-pressure deformation technology toward understanding complicated seismic structure and dynamics of Earth's inner core
开发创新的高压变形技术以了解地球内核的复杂地震结构和动力学
- 批准号:
19H00724 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Urgent replacement of a submersible fluorometer for understanding factors affecting the spatial dynamics of phytoplankton community structure and function
紧急更换潜水式荧光计,以了解影响浮游植物群落结构和功能空间动态的因素
- 批准号:
RTI-2019-00172 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Research Tools and Instruments
Understanding helicity structure and the out-of-equilibrium dynamics of anomalies in high-energy QCD
了解高能 QCD 异常的螺旋结构和不平衡动力学
- 批准号:
404640738 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Research Fellowships
Understanding the Structure and Dynamics of Solvated Electrons Using Ultrafast Spectroscopy and Mixed Quantum/Classical Molecular Dynamics Simulation
使用超快光谱和混合量子/经典分子动力学模拟了解溶剂化电子的结构和动力学
- 批准号:
1565434 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Integrating functional, phylogenetic and genetic components of diversity for an improved understanding of forest structure, dynamics, and change
整合多样性的功能、系统发育和遗传组成部分,以更好地了解森林结构、动态和变化
- 批准号:
1545761 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Towards a molecular understanding of the thermodynamics, structure and dynamics of supramolecular polymer melts and networks
对超分子聚合物熔体和网络的热力学、结构和动力学的分子理解
- 批准号:
284072869 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Research Grants
Three-dimensional internal structure and characteristics of periglacial landforms as a key to enhance the understanding of process dynamics and sensitivity to climate change
冰缘地貌的三维内部结构和特征是增强过程动力学和气候变化敏感性认识的关键
- 批准号:
248033933 - 财政年份:2014
- 资助金额:
$ 50万 - 项目类别:
Research Grants