Probing Coupled Electronic and Vibrational Motions in Ultrafast Proton Transfer Processes with Mixed-Frequency Multidimensional Vibronic and Soft X-ray Spectroscopies
利用混合频率多维电子振动和软 X 射线光谱探测超快质子传递过程中的耦合电子和振动运动
基本信息
- 批准号:1856413
- 负责人:
- 金额:$ 45.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project funded by the Chemical Structure and Dynamics-A (CSDM-A) program of the Chemistry Division, Professor Munira Khalil of the University of Washington is using advanced laser techniques to understand how a proton (a hydrogen atom without its electron) moves from an oxygen atom (proton donor) to a nitrogen atom (proton acceptor) in the same molecule. This process is termed intramolecular (within the molecule) proton transfer and is a fundamental step in natural photosynthesis, as well as some energy conversion processes like hydrogen fuel generation from light energy. Some important proton transfer processes occur extremely quickly, for example in less than two hundred femtoseconds (one quadrillionth of a second). The rapidity of this process makes it difficult to measure, and to answer such questions as, "how does the speed of intramolecular proton transfer depend on the structure of the molecule?". To overcome this challenge, Professor Khalil is designing experimental tools that utilize a wide range of light wavelengths, from the infrared spectrum (long wavelengths that we feel as "heat") to X-rays (very short wavelengths). These tools provide detailed information about the motions of electrons and atoms within molecules. This research provides new information to develop more efficient molecules for converting light into chemical energy. The effort also creates new femtosecond technologies and trains graduate students in cutting-edge optical techniques. Professor Khalil conducts an outreach program that includes a hands-on optics module for middle school girls from STEM-disadvantaged backgrounds. This program is part of the "Girls on Science" program conducted through the University of Washington's Burke Museum. The first objective of this research program is to map the relationship between electronic excitation and vibrational motion in a series of intramolecular hydrogen-bonded complexes with different hydrogen bond strengths. The second objective is to understand how a molecule shakes off excess energy after absorbing a photon (this happens in DNA complexes) as a function of the distance and angle between the hydrogen bond donor and acceptor. The first two objectives are accomplished using advanced laser techniques developed in the Professor Khalil's laboratory. The final goal is to map the electron distribution at the proton donor and acceptor sites with element specific soft X-ray spectroscopy. The X-ray experiments are conducted at the Advanced Light Source (ALS) at Lawrence Berkeley National Laboratory (Berkeley, CA). The broader impacts include an increased understanding of light-induced electron-proton transfer processes, which are important reactions in several natural and artificial energy conversion processes that may lead to the development of new molecules, materials and devices for alternative energy production. The team is also creating new femtosecond technologies and training the next generation of scientists in state-of-the art ultrafast techniques in the laboratory and at X-ray synchrotrons.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在这个由化学系化学结构和动力学-A(CSDM-A)项目资助的项目中,华盛顿大学的Munira Khalil教授正在使用先进的激光技术来了解质子(没有电子的氢原子)如何从同一分子中的氧原子(质子供体)移动到氮原子(质子受体)。 这个过程被称为分子内(分子内)质子转移,是自然光合作用的基本步骤,也是一些能量转换过程,如从光能产生氢燃料。 一些重要的质子转移过程发生得非常快,例如不到200飞秒(千万亿分之一秒)。 这一过程的快速性使得测量和回答诸如“分子内质子转移的速度如何取决于分子的结构?".为了克服这一挑战,哈利勒教授正在设计实验工具,利用广泛的光波长,从红外光谱(长波长,我们感觉为“热”)到X射线(非常短的波长)。 这些工具提供了有关分子内电子和原子运动的详细信息。 这项研究为开发更有效的分子将光转化为化学能提供了新的信息。 这项工作还创造了新的飞秒技术,并培养研究生在尖端光学技术。教授哈利勒进行了一个外展计划,其中包括从干弱势背景的中学女生动手光学模块。 这个项目是通过华盛顿大学伯克博物馆进行的“科学女孩”项目的一部分。 本研究计划的第一个目标是映射电子激发和振动运动之间的关系,在一系列的分子内氢键复合物具有不同的氢键强度。 第二个目标是了解分子在吸收光子后如何摆脱多余的能量(这发生在DNA复合物中),作为氢键供体和受体之间的距离和角度的函数。 前两个目标是利用哈利勒教授实验室开发的先进激光技术实现的。 最终的目标是映射的电子分布在质子供体和受体网站与元素特定的软X射线光谱。 X射线实验在劳伦斯伯克利国家实验室(加利福尼亚州伯克利)的先进光源(ALS)进行。 更广泛的影响包括加深对光诱导电子-质子转移过程的了解,这是几种自然和人工能源转换过程中的重要反应,可能导致开发新的分子、材料和装置用于替代能源生产。 该团队还在创造新的飞秒技术,并在实验室和X射线同步加速器上培训下一代科学家使用最先进的超快技术。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multimode two-dimensional vibronic spectroscopy. II. Simulating and extracting vibronic coupling parameters from polarization-selective spectra
多模二维电子振动光谱。
- DOI:10.1063/5.0047727
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Weakly, Robert B.;Gaynor, James D.;Khalil, Munira
- 通讯作者:Khalil, Munira
Spectral Signatures of Ultrafast Excited-State Intramolecular Proton Transfer from Computational Multi-edge Transient X-ray Absorption Spectroscopy
- DOI:10.1021/acs.jpclett.1c02483
- 发表时间:2021-10-04
- 期刊:
- 影响因子:5.7
- 作者:Loe, Caroline M.;Liekhus-Schmaltz, Chelsea;Khalil, Munira
- 通讯作者:Khalil, Munira
A Theoretical Study of Polarization Selective Two-Dimensional Vibronic Spectroscopies of Multimode Systems
多模系统偏振选择性二维电子振动光谱的理论研究
- DOI:10.1364/up.2020.m4b.20
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Weakly, Robert B.;Gaynor, James D.;Khalil, Munira
- 通讯作者:Khalil, Munira
Implementation of Broadband near-UV Pump Pulses for Ultrafast 2D Electronic-Vibrational Spectroscopy
用于超快二维电子振动光谱的宽带近紫外泵浦脉冲的实现
- DOI:10.1364/up.2020.tu2a.2
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Sandwisch, Jason W.;Gaynor, James D.;Khalil, Munira
- 通讯作者:Khalil, Munira
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Munira Khalil其他文献
Munira Khalil的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Munira Khalil', 18)}}的其他基金
Correlating Electronic and Atomic Motions in Photoinduced Electron-Proton Transfer Reactions with Two-Dimensional Electronic-Vibrational and X-ray Spectroscopies
将光致电子-质子转移反应中的电子和原子运动与二维电子振动和 X 射线光谱关联起来
- 批准号:
1565759 - 财政年份:2016
- 资助金额:
$ 45.15万 - 项目类别:
Continuing Grant
CAREER: Correlation of coupled electronic and nuclear motions in biological photoreceptors using femtosecond multidimensional spectroscopies
职业:使用飞秒多维光谱研究生物光感受器中耦合电子和核运动的相关性
- 批准号:
0847790 - 财政年份:2009
- 资助金额:
$ 45.15万 - 项目类别:
Standard Grant
相似海外基金
Coupled Ionic-Electronic-Structural Dynamics in Organic Mixed Conductors
有机混合导体中的耦合离子电子结构动力学
- 批准号:
2304613 - 财政年份:2023
- 资助金额:
$ 45.15万 - 项目类别:
Standard Grant
Interacting electronic phases of spin-orbit coupled materials
自旋轨道耦合材料的相互作用电子相
- 批准号:
532505-2019 - 财政年份:2021
- 资助金额:
$ 45.15万 - 项目类别:
Postdoctoral Fellowships
Characterization of the Electronic and Structural Properties of Strongly-Coupled Organic Semiconductors
强耦合有机半导体的电子和结构特性表征
- 批准号:
552773-2020 - 财政年份:2020
- 资助金额:
$ 45.15万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Interacting electronic phases of spin-orbit coupled materials
自旋轨道耦合材料的相互作用电子相
- 批准号:
532505-2019 - 财政年份:2020
- 资助金额:
$ 45.15万 - 项目类别:
Postdoctoral Fellowships
Portable Affordable Innovative and Smart Device-Coupled Electronic Fetal Monitoring System to Improve Rural Access to Obstetrics Services and Improve Outcomes in Rural Communities
便携式经济实惠的创新智能设备耦合电子胎儿监护系统可改善农村地区获得产科服务的机会并改善农村社区的成果
- 批准号:
10382687 - 财政年份:2020
- 资助金额:
$ 45.15万 - 项目类别:
Portable Affordable Innovative and Smart Device-Coupled Electronic Fetal Monitoring System to Improve Rural Access to Obstetrics Services and Improve Outcomes in Rural Communities
便携式经济实惠的创新智能设备耦合电子胎儿监护系统可改善农村地区获得产科服务的机会并改善农村社区的成果
- 批准号:
10570927 - 财政年份:2020
- 资助金额:
$ 45.15万 - 项目类别:
Interacting electronic phases of spin-orbit coupled materials
自旋轨道耦合材料的相互作用电子相
- 批准号:
532505-2019 - 财政年份:2019
- 资助金额:
$ 45.15万 - 项目类别:
Postdoctoral Fellowships
Local electronic structure of single molecules and molecular nanostructures coupled to monolayers of transition metal dichalcogenides (A14*)
单分子的局部电子结构和与单层过渡金属二硫属化物 (A14*) 耦合的分子纳米结构
- 批准号:
427244821 - 财政年份:2019
- 资助金额:
$ 45.15万 - 项目类别:
Collaborative Research Centres
Efficient simulation of coupled electronic and nuclear motion in molecules in intense laser fields
强激光场中分子耦合电子和核运动的有效模拟
- 批准号:
18K05024 - 财政年份:2018
- 资助金额:
$ 45.15万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Coupled Electronic and Lattice Structures in Thin Crystalline Films
晶体薄膜中的耦合电子和晶格结构
- 批准号:
1709945 - 财政年份:2017
- 资助金额:
$ 45.15万 - 项目类别:
Continuing Grant