Coupled Ionic-Electronic-Structural Dynamics in Organic Mixed Conductors
有机混合导体中的耦合离子电子结构动力学
基本信息
- 批准号:2304613
- 负责人:
- 金额:$ 46.07万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
With the support of the Macromolecular, Supramolecular and Nanochemistry program in the Division of Chemistry, Connor G. Bischak of the University of Utah is elucidating the relationship between electronic transport, ion motion, and structural dynamics in conjugated polymers that operate as organic mixed ionic-electronic conductors (OMIECs). OMIECs are soft polymeric semiconductors which can conduct both electronic and ionic charges. This unique ability makes them particularly suitable for a variety of applications of relevance to next-generation bioelectronic, optoelectronic and energy storage devices. However, for many of these applications, it is currently difficult to choose a combination of polymer molecular structure, polymer processing conditions, and electrolyte to achieve a specific performance metric. This project will fill these knowledge gaps by exploiting the high spatial resolution and chemical specificity of novel scanning probe imaging approaches, as well as a complementary suite of traditional and novel in situ techniques. Fundamental correlations established as a result of this work have the potential to help guide synthetic chemists towards synthesizing the next generation of OMIEC conjugated polymers. The interdisciplinary nature of this research will provide strong training and professional development opportunities for high school, undergraduate and graduate students. The project will additionally support an outreach effort to supply local high school chemistry classrooms with affordable 3D-printed spectrometers to learn about light-matter interactions, similar to those that are used to interrogate OMIEC polymers.This research will focus on investigating organic mixed ionic-electronic conductors (OMIECs) to uncover relationships between ion motion, electronic transport, and structural dynamics. Poly(thiophene)s with various backbones comprised of hydrocarbons, oligo (ethylene glycol)s, or carbonyl functionalities will be the focal points, in part because they are currently the highest performing OMIEC materials. In the first specific aim, reversible and irreversible structural dynamics will be investigated using blends of semicrystalline and amorphous polymers to tune the crystallinity and measure ion injection kinetics as a function of crystalline to amorphous polymer ratios. The second aim will extend studies to ion dependent effects. Finally, the impacts of heterogeneous polymer structure will be addressed through correlative nanoscale imaging that will be used to answer basic questions about the doping process and structural dynamics. The combined efforts have the potential to afford new insights into chemical design elements that enable more effective conductivity. This research aims to address critical knowledge gaps in the field with the goal of enabling design of optimal ionic and electronic conductivity in such systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系中的大分子,超分子和纳米化学计划的支持下,犹他大学的Connor G. Bischak阐明了电子传输,离子运动和结构动力学之间的关系,该聚合物在共轭聚合物中用作有机混合离子电离电导体(momiecs)的关系。 OMIEC是软聚合物半导体,可以同时进行电子和离子电荷。 这种独特的能力使它们特别适合于与下一代生物电子,光电和储能设备相关的各种应用。 但是,对于许多这些应用,目前很难选择聚合物分子结构,聚合物加工条件和电解质的组合来实现特定的性能度量。 该项目将通过利用新型扫描探针成像方法的高空间分辨率和化学特异性以及互补的传统和新颖的原位技术套件来填补这些知识差距。 由于这项工作而建立的基本相关性有可能帮助指导合成化学家合成下一代OMIEC共轭聚合物。 这项研究的跨学科性质将为高中,本科和研究生提供强大的培训和专业发展机会。 该项目还将支持宣传工作,以提供负担得起的3D打印光谱仪提供当地高中化学课堂,以了解光明互动,类似于用于询问Omiec Polymers的互动。这项研究将重点介绍有机混合离子离子电离子 - 电导器(OMEIEC)(OMEICS),以发现离子运动和结构性运输和结构性动力学之间的关系。聚(噻吩)具有各种主链由碳氢化合物,寡聚(乙二醇)S或羰基功能组成的骨架,部分是因为它们目前是性能最高的弹药材料。 在第一个特定目的中,将使用半稳定和无定形聚合物的混合物研究可逆和不可逆的结构动力学,以调整结晶度并测量离子注射动力学作为晶体与无定形聚合物比率的函数。 第二个目标将将研究扩展到离子依赖性效应。 最后,将通过相关纳米级成像来解决异质聚合物结构的影响,该成像将用于回答有关掺杂过程和结构动力学的基本问题。 综合努力有可能提供对化学设计元素的新见解,从而使能够更有效的电导率。这项研究旨在解决该领域的关键知识差距,目的是在此类系统中设计最佳离子和电子电导率。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛的影响来评估的评估值得支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Connor Bischak其他文献
Connor Bischak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
半导性聚合物壳层限域的聚离子液颗粒的离子-电子耦合、极化与电流变效应研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于离子-电子耦合转移的离子嵌脱动力学理论与模拟研究
- 批准号:22272122
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
半导性聚合物壳层限域的聚离子液颗粒的离子-电子耦合、极化与电流变效应研究
- 批准号:52272305
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
基于离子-电子耦合转移的离子嵌脱动力学理论与模拟研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
氟离子耦合电子转移策略活化六氟化硫的五氟化硫官能团化反应研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Revealing the Influence of Electrolyte Solvents and Ions on Electronic and Ionic Transport in Electrochemically Doped Conjugated Polymers
揭示电解质溶剂和离子对电化学掺杂共轭聚合物中电子和离子传输的影响
- 批准号:
2349830 - 财政年份:2024
- 资助金额:
$ 46.07万 - 项目类别:
Standard Grant
CAREER: Block Polyelectrolyte Complexes for Controlled Mixed Ionic-Electronic Conduction
职业:用于受控混合离子电子传导的嵌段聚电解质复合物
- 批准号:
2237888 - 财政年份:2023
- 资助金额:
$ 46.07万 - 项目类别:
Continuing Grant
Collaborative Research: Elucidating the Roles of Electric Fields Within Mixed Ionic and Electronic Conducting Oxides Under Electrochemical Reducing Conditions
合作研究:阐明电化学还原条件下混合离子和电子导电氧化物中电场的作用
- 批准号:
2333166 - 财政年份:2023
- 资助金额:
$ 46.07万 - 项目类别:
Continuing Grant
Surfaces and interfaces of luminescent polymer mixed ionic/electronic conductors
发光聚合物混合离子/电子导体的表面和界面
- 批准号:
RGPIN-2020-04026 - 财政年份:2022
- 资助金额:
$ 46.07万 - 项目类别:
Discovery Grants Program - Individual
Understanding electronic and ionic interfaces in core-shell silicon anodes
了解核壳硅阳极中的电子和离子界面
- 批准号:
572985-2022 - 财政年份:2022
- 资助金额:
$ 46.07万 - 项目类别:
University Undergraduate Student Research Awards