CIF: Medium: Collaborative Research: Theory of Optimization Geometry and Algorithms for Neural Networks

CIF:媒介:协作研究:神经网络优化几何理论和算法

基本信息

  • 批准号:
    1856549
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-10-01 至 2019-12-31
  • 项目状态:
    已结题

项目摘要

Deep learning has attracted a significant amount of interest in recent years due to its widespread applicability in computer vision, artificial intelligence and natural language processing, alongside recent strides in autonomous driving. The theoretical underpinnings behind such success, however, remain elusive to a large extent, hindering its further adoption in other applications. This project aims to advance the theoretical foundations of training neural networks in terms of optimization landscape and algorithmic efficacy, which in turn should have a measurable impact on the practice of deep learning by providing guiding principles for network design, algorithm selection, hyperparameter tuning, and adversarial training. This project adopts an interdisciplinary approach fusing ideas from machine learning, optimization, statistical signal processing, high-dimensional statistics, nonparametric statistics, and information theory. This project will likewise develop courses and tutorials on theoretical foundations of large-scale machine learning and provide extensive training opportunities for students at all levels.This project aims to develop a comprehensive theory to characterize the optimization landscape and geometry of loss functions and algorithmic regularizations of major neural network training problems, and explore how the network architecture---including depth, width, and activation functions---affect these properties, thus providing guidelines for the design of algorithms to train these networks more efficiently with theoretical performance guarantees. The project will explore the geometric properties and their impact on the optimization performance in training multi-layer neural networks, auto-encoders, generative adversarial networks, and adversarial training involving non-convex and saddle-point problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近年来,深度学习吸引了大量的兴趣,因为它在计算机视觉、人工智能和自然语言处理方面的广泛应用,以及最近在自动驾驶方面的进步。然而,这种成功背后的理论基础在很大程度上仍然难以捉摸,阻碍了它在其他应用中的进一步采用。该项目旨在从优化景观和算法效率方面推进训练神经网络的理论基础,通过为网络设计、算法选择、超参数调整和对抗性训练提供指导原则,这反过来应该对深度学习的实践产生可衡量的影响。该项目采用跨学科的方法,融合了机器学习,优化,统计信号处理,高维统计,非参数统计和信息论的思想。该项目还将开发大规模机器学习理论基础的课程和教程,并为各级学生提供广泛的培训机会。该项目旨在开发一个全面的理论来表征主要神经网络训练问题的损失函数和算法正则化的优化景观和几何,并探索网络架构-包括深度,宽度,和激活函数-影响这些属性,从而为算法的设计提供指导,以在理论性能保证的情况下更有效地训练这些网络。该项目将探索几何属性及其对训练多层神经网络、自动编码器、生成对抗网络和涉及非凸和鞍点问题的对抗训练的优化性能的影响。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jason Lee其他文献

Paclitaxel Drug Elution from a Biodegradable Stent
从可生物降解支架中洗脱紫杉醇药物
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gary Lam;Jason Lee;N. Nguyen;Kevin Wu
  • 通讯作者:
    Kevin Wu
MANAGED FLOATING AND INTERMEDIATE EXCHANGE RATE SYSTEMS: THE SINGAPORE EXPERIENCE*
有管理的浮动汇率和中间汇率体系:新加坡的经验*
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Khor Hoe Ee;E. Robinson;Jason Lee
  • 通讯作者:
    Jason Lee
Bilateral Atypical Femoral Fracture in a Bisphosphonate-Naïve Patient with Prior Long-Term Denosumab Therapy: A Case Report of the Management Strategy and a Literature Review
既往接受过长期狄诺塞麦治疗的双磷酸盐初治患者的双侧非典型股骨骨折:管理策略病例报告和文献综述
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Kyle Auger;Jason Lee;Ian S. Hong;Jaclyn M. Jankowski;Frank A. Liporace;Richard S. Yoon
  • 通讯作者:
    Richard S. Yoon
Horizontal muon track identification with neural networks in HAWC
HAWC 中神经网络的水平 μ 子径迹识别
  • DOI:
    10.22323/1.395.1036
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. R. A. Camacho;A. Abeysekara;A. Albert;R. Alfaro;C. Álvarez;Juan de Dios Álvarez Romero;J. Velazquez;Arun Babu Kollamparambil;D. Rojas;H. A. Solares;R. Babu;V. Baghmanyan;A. Barber;J. González;E. Belmont;S. BenZvi;D. Berley;C. Brisbois;K. Mora;T. Capistrán;A. Carramiñana;S. Casanova;O. Chaparro;U. Cotti;J. Cotzomi;S. León;E. D. L. Fuente;C. D. León;Lorenzo Diaz;R. D. Hernandez;J. Vélez;B. Dingus;M. Durocher;M. DuVernois;R. Ellsworth;K. Engel;María Catalina Espinoza Hernández;Jason Fan;K. Fang;M. F. Alonso;B. Fick;H. Fleischhack;J. L. Flores;N. Fraija;Diego Garcia Aguilar;J. A. García;J. L. García;G. Garcia;F. Garfias;G. Giacinti;H. Goksu;M. González;J. Goodman;J. P. Harding;S. H. Cadena;I. Herzog;J. Hinton;B. Hona;Dezhi Huang;F. Hueyotl;M. Hui;B. Humensky;P. Hüntemeyer;A. Iriarte;A. Jardin;H. Jhee;V. Joshi;D. Kieda;G. Kunde;S. Kunwar;A. Lara;Jason Lee;W. Lee;D. Lennarz;H. L. Vargas;J. Linnemann;A. Longinotti;R. López;G. Luis;J. Lundeen;K. Malone;V. Marandon;O. Martinez;I. Castellanos;Humberto Martínez Huerta;J. Martínez;J. Matthews;J. Mcenery;P. Miranda;Jorge Antonio Morales Soto;E. M. Barbosa;M. Mostafá;A. Nayerhoda;L. Nellen;M. Newbold;M. Nisa;R. Noriega;L. Olivera;N. Omodei;A. Peisker;Y. P. Araujo;E. Pérez;C. Rho;C. Rivière;D. Rosa;E. Ruiz;J. Ryan;H. Salazar;F. Greus;A. Sandoval;Michael Schneider;H. Schoorlemmer;J. Serna;G. Sinnis;A. Smith;W. Springer;P. Surajbali;I. Taboada;M. Tanner;K. Tollefson;I. Torres;Ramiro Torres Escobedo;Rhiannon M. Turner;F. Ureña;Luis Villaseñor;Xiaojie Wang;I. Watson;T. Weisgarber;Felix Werner;E. Willox;Joshua R. Wood;G. Yodh;A. Zepeda;Hao Zhou;Hawc
  • 通讯作者:
    Hawc
Convolutional Neural Networks for Low Energy Gamma-Ray Air Shower Identification with HAWC
使用 HAWC 进行低能伽马射线空气簇射识别的卷积神经网络
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    I. Watson;A. Abeysekara;A. Albert;R. Alfaro;C. Álvarez;Juan de Dios Álvarez Romero;J. R. A. Camacho;J. Velazquez;Arun Babu Kollamparambil;D. Rojas;H. A. Solares;R. Babu;V. Baghmanyan;A. Barber;J. González;E. Belmont;S. BenZvi;D. Berley;C. Brisbois;K. Mora;T. Capistrán;A. Carramiñana;S. Casanova;O. Chaparro;U. Cotti;J. Cotzomi;S. León;E. D. L. Fuente;C. D. León;L. Diaz;R. D. Hernandez;J. C. Vélez;B. Dingus;M. Durocher;M. DuVernois;R. Ellsworth;K. Engel;María Catalina Espinoza Hernández;Jason Fan;K. Fang;M. F. Alonso;B. Fick;H. Fleischhack;J. L. Flores;N. Fraija;Diego Garcia Aguilar;J. García;J. L. García;G. Garcia;F. Garfias;G. Giacinti;H. Goksu;M. González;J. Goodman;J. P. Harding;S. H. Cadena;I. Herzog;J. Hinton;B. Hona;Dezhi Huang;F. Hueyotl;M. Hui;B. Humensky;P. Hüntemeyer;A. Iriarte;A. Jardin;H. Jhee;V. Joshi;D. Kieda;G. Kunde;S. Kunwar;A. Lara;Jason Lee;W. Lee;D. Lennarz;H. L. Vargas;J. Linnemann;A. Longinotti;R. López;G. Luis;J. Lundeen;K. Malone;V. Marandon;O. Martinez;I. Castellanos;Humberto Martínez Huerta;J. Martínez;J. Matthews;J. Mcenery;P. Miranda;Jorge Antonio Morales Soto;E. M. Barbosa;M. Mostafá;A. Nayerhoda;L. Nellen;M. Newbold;M. Nisa;R. Noriega;L. Olivera;N. Omodei;A. Peisker;Y. P. Araujo;E. Pérez;C. Rho;C. Rivière;D. Rosa;E. Ruiz;J. Ryan;H. Salazar;F. Greus;A. Sandoval;Michael Schneider;H. Schoorlemmer;J. Serna;G. Sinnis;A. Smith;W. Springer;P. Surajbali;I. Taboada;M. Tanner;K. Tollefson;I. Torres;Ramiro Torres Escobedo;Rhiannon N. Turner;F. Ureña;L. Villaseñor;Xiaojie Wang;I. Watson;T. Weisgarber;F. Werner;E. Willox;Joshua R. Wood;G. Yodh;A. Zepeda;Hao Zhou;Hawc
  • 通讯作者:
    Hawc

Jason Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jason Lee', 18)}}的其他基金

Collaborative Research: CIF: Medium: MoDL:Toward a Mathematical Foundation of Deep Reinforcement Learning
合作研究:CIF:媒介:MoDL:迈向深度强化学习的数学基础
  • 批准号:
    2212262
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Towards a Theory of Deep Learning
职业:走向深度学习理论
  • 批准号:
    2144994
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CIF: Medium: Collaborative Research: Theory of Optimization Geometry and Algorithms for Neural Networks
CIF:媒介:协作研究:神经网络优化几何理论和算法
  • 批准号:
    2002272
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
REU Site: Interdisciplinary Nanotechnology Traineeship for Next-Generation Energy, Health, Information, and Manufacturing
REU 网站:下一代能源、健康、信息和制造的跨学科纳米技术培训
  • 批准号:
    1560098
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Preparing African American Males for Energy & Education (PAAMEE)
为非洲裔美国男性提供能源做好准备
  • 批准号:
    1614741
  • 财政年份:
    2016
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
PURSE: Promoting Underrepresented Girls Involvement in Research, Science, and Energy
PURSE:促进代表性不足的女孩参与研究、科学和能源
  • 批准号:
    0929728
  • 财政年份:
    2009
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
NSFAYS Math Achievers
NSFAYS 数学成就者
  • 批准号:
    0639725
  • 财政年份:
    2007
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403122
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402815
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402817
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402816
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403123
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Cache-aided Multi-user Private Function Retrieval
协作研究:CIF:中:缓存辅助多用户私有函数检索的基本限制
  • 批准号:
    2312229
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
  • 批准号:
    2312205
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Privacy-Enhancing Technologies
合作研究:CIF:中:隐私增强技术的基本限制
  • 批准号:
    2312666
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Cache-aided Multi-user Private Function Retrieval
协作研究:CIF:中:缓存辅助多用户私有函数检索的基本限制
  • 批准号:
    2312228
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Collaborative Research: CIF: Medium: Robust Learning over Graphs
协作研究:CIF:媒介:图上的鲁棒学习
  • 批准号:
    2312547
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了