Geometric Representation Theory and Low Dimensional Topology
几何表示理论和低维拓扑
基本信息
- 批准号:1856643
- 负责人:
- 金额:$ 2.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-04-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The conference "Geometric Representation Theory and Low Dimensional Topology" will take place at the International Centre for Mathematical Sciences in Edinburgh, Scotland, June 10-14, 2019. There will be a summer school June 3-7 with several lecture series to provide background material for early career participants in the conference. The overall goal of the conference is to study interactions between the two areas of mathematics in the title. "Topology" is the study of shapes that are allowed to stretch and bend. For example, a triangle and circle are considered to be topologically equivalent because one can be stretched into the other, and similarly a cube and sphere are considered topologically equivalent. "Low dimensional topology" studies shapes or objects in dimensions 2, 3, and 4, such as surfaces, or knotted loops in 3-dimensional space. This can be useful in other sciences; for example, DNA can be knotted, or the shape of the universe could have a nontrivial topology. "Representation theory" is the study of symmetries in mathematics, and at a concrete level, these symmetries often manifest themselves as solutions to systems of equations where the variables represent matrices instead of numbers. This mathematical area has also had applications in other sciences, such as symmetries of elementary particles in physics, or symmetries of molecules inchemistry. There are sophisticated mathematical techniques for taking certain spaces of solutions to polynomial equations and producing solutions to matrix equations, and recently low dimensional topology has been used to find solutions to the same equations, using completely different mathematical constructions. One of the goals of the conference is to understand this new phenomenon using ideas coming from mathematical physics. This award will fund participation of early career US scientists in this summer school and conference so they can learn about these exciting new ideas.More details about the conference are available at https://www.icms.org.uk/geometricrepresentation.php.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
“几何表示理论和低维拓扑”会议将于2019年6月10日至14日在苏格兰爱丁堡的国际数学科学中心举行。6月3日至7日将有一个暑期学校,有几个系列讲座,为会议的早期职业参与者提供背景材料。会议的总体目标是研究标题中两个数学领域之间的相互作用。“拓扑学”是对允许拉伸和弯曲的形状的研究。例如,三角形和圆被认为是拓扑等价的,因为一个可以拉伸到另一个中,类似地,立方体和球体被认为是拓扑等价的。“低维拓扑学”研究二维、三维和四维的形状或物体,如三维空间中的曲面或打结环。这在其他科学中也很有用,例如,DNA可以打结,或者宇宙的形状可以有一个非平凡的拓扑结构。“表示论”是对数学中对称性的研究,在具体的层面上,这些对称性通常表现为方程组的解,其中变量表示矩阵而不是数字。这一数学领域也在其他科学中得到应用,如物理学中基本粒子的对称性,或化学中分子的对称性。有复杂的数学技术采取某些空间的解决方案多项式方程和生产的解决方案矩阵方程,最近低维拓扑已被用来寻找解决方案,相同的方程,使用完全不同的数学结构。会议的目标之一是利用来自数学物理的想法来理解这种新现象。该奖项将资助美国早期职业科学家参加这个暑期学校和会议,使他们能够了解这些令人兴奋的新想法。有关会议的更多详细信息,请访问https://www.icms.org.uk/geometricrepresentation.php.This奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Peter Samuelson其他文献
Kauffman Bracket Skein Modules And The Quantum Torus
考夫曼支架绞纱模块和量子环面
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Peter Samuelson - 通讯作者:
Peter Samuelson
THE HALL ALGEBRAS OF SURFACES I
曲面的霍尔代数 I
- DOI:
10.1017/s1474748018000324 - 发表时间:
2017 - 期刊:
- 影响因子:0.9
- 作者:
Benjamin C. Cooper;Peter Samuelson - 通讯作者:
Peter Samuelson
Double affine Hecke algebras and generalized Jones polynomials
双仿射赫克代数和广义琼斯多项式
- DOI:
10.1112/s0010437x16007314 - 发表时间:
2014 - 期刊:
- 影响因子:1.8
- 作者:
Y. Berest;Peter Samuelson - 通讯作者:
Peter Samuelson
On <math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.gif" overflow="scroll" class="math"><mi mathvariant="normal">CAT</mi><mo stretchy="false">(</mo><mn>0</mn><mo stretchy="false">)</mo></math> structures for free-by-cyclic groups
- DOI:
10.1016/j.topol.2005.12.002 - 发表时间:
2006-09-01 - 期刊:
- 影响因子:
- 作者:
Peter Samuelson - 通讯作者:
Peter Samuelson
On the genus two skein algebra
关于属二绞线代数
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
J. Cooke;Peter Samuelson - 通讯作者:
Peter Samuelson
Peter Samuelson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Local Geometric Langlands Correspondence and Representation Theory
局部几何朗兰兹对应与表示理论
- 批准号:
2416129 - 财政年份:2024
- 资助金额:
$ 2.95万 - 项目类别:
Standard Grant
Study of moduli spaces of vacua of supersymmetric gauge theories by geometric representation theory
用几何表示理论研究超对称规范理论真空模空间
- 批准号:
23K03067 - 财政年份:2023
- 资助金额:
$ 2.95万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference: Geometric representation theory and moduli spaces
会议:几何表示理论和模空间
- 批准号:
2328483 - 财政年份:2023
- 资助金额:
$ 2.95万 - 项目类别:
Standard Grant
Geometric representation theory and crystals
几何表示理论和晶体
- 批准号:
RGPIN-2018-04713 - 财政年份:2022
- 资助金额:
$ 2.95万 - 项目类别:
Discovery Grants Program - Individual
Diagrammatic and geometric techniques in representation theory
表示论中的图解和几何技术
- 批准号:
RGPIN-2018-03974 - 财政年份:2022
- 资助金额:
$ 2.95万 - 项目类别:
Discovery Grants Program - Individual
Geometric representation theory and crystals
几何表示理论和晶体
- 批准号:
RGPIN-2018-04713 - 财政年份:2022
- 资助金额:
$ 2.95万 - 项目类别:
Discovery Grants Program - Individual
Geometric representation theory and crystals
几何表示理论和晶体
- 批准号:
522588-2018 - 财政年份:2022
- 资助金额:
$ 2.95万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Modular representation theory, Hilbert modular forms and the geometric Breuil-Mézard conjecture.
模表示理论、希尔伯特模形式和几何布勒伊-梅扎德猜想。
- 批准号:
EP/W001683/1 - 财政年份:2022
- 资助金额:
$ 2.95万 - 项目类别:
Fellowship
Geometric Methods in Representation Theory and the Langlands Program
表示论中的几何方法和朗兰兹纲领
- 批准号:
2101837 - 财政年份:2021
- 资助金额:
$ 2.95万 - 项目类别:
Continuing Grant
Geometric Representation Theory and W-algebras
几何表示理论和W代数
- 批准号:
MR/S032657/3 - 财政年份:2021
- 资助金额:
$ 2.95万 - 项目类别:
Fellowship