D3SC: CDS&E: Learning molecular models from microscopic simulation and experimental data
D3SC:CDS
基本信息
- 批准号:1900374
- 负责人:
- 金额:$ 51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Cecilia Clementi of Rice University is supported by an award from the Chemical Theory, Models and Computational Methods program in the Division of Chemistry to develop multiscale models for macromolecular systems. Professor Clementi and her group are developing machine learning tools to combine the results from microscopic simulation and experimental data into a data-driven modeling framework. The last several years have seen an immense increase in high-throughput and high-resolution technologies for experimental observation. These advances are combined with high-performance techniques to simulate molecular systems at a microscopic level resulting in vast and ever-increasing amounts of data. Professor Clementi is taking advantage of this abundance of data and uses machine learning to extract information, in order to formulate general principles regulating the behavior of molecular systems. Understanding chemical processes at the molecular level is essential for a large number of applications, from energy storage to drug design. Additionally, as the need to represent massive data sets in terms of a model bears similarity across different fields, Professor Clementi's work may have an impact on a broad range of completely different disciplines from genomics to finance. This research impacts an interdisciplinary community of students and researchers. Her project includes the development of undergraduate and graduate courses, and outreach activities focused in the recruiting and mentoring of minority students, especially through collaboration with the Tapia Center at Rice University.Professor Clementi is developing a data-driven framework to design effective molecular models at multiple resolutions, to address questions currently out of reach to existing computational and experimental approaches. The main idea is to use state-of-the-art machine learning methods to "learn" the coarse-grained dynamical models governing molecular systems (structure, thermodynamics, and kinetics/mechanism) at the mesoscale, by combining simulation data generated from microscopic simulation, and experimental data. By integrating different sources of data, this modeling approach reconciles bottom-up and top-down methods. This approach generates functional building blocks that can be embedded in higher-order simulations in order to bridge the gap to macroscopic systems. This modeling framework may serve as a keystone to integrate vast amounts of chemical data into quantitative, mechanistic and comprehensible models. Such models may explain how different molecular components organize and interact as a function of time and space in performing functions at the macroscopic scale. In particular, the developed framework is applied to investigate one specific biomolecular process: the binding of peptides to Major Histocompatability Complex (MHC) proteins.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
莱斯大学的Cecilia Clementi获得了化学系化学理论、模型和计算方法项目的一个奖项的支持,以开发大分子系统的多尺度模型。 Clementi教授和她的团队正在开发机器学习工具,将微观模拟和实验数据的结果联合收割机结合到数据驱动的建模框架中。在过去几年中,用于实验观测的高通量和高分辨率技术有了巨大的增长。 这些进展与高性能技术相结合,在微观水平上模拟分子系统,从而产生大量且不断增加的数据。Clementi教授正在利用这些丰富的数据,并使用机器学习来提取信息,以制定调节分子系统行为的一般原则。在分子水平上理解化学过程对于从能量储存到药物设计的大量应用至关重要。此外,由于需要用模型来表示大量数据集在不同领域具有相似性,因此Clementi教授的工作可能会对从基因组学到金融学的各种完全不同的学科产生影响。这项研究影响了学生和研究人员的跨学科社区。她的项目包括本科生和研究生课程的开发,以及专注于招募和指导少数民族学生的外展活动,特别是通过与莱斯大学塔皮亚中心的合作。Clementi教授正在开发一个数据驱动的框架,以设计多分辨率的有效分子模型,以解决现有计算和实验方法目前无法解决的问题。其主要思想是使用最先进的机器学习方法,通过结合微观模拟生成的模拟数据和实验数据,在中尺度上“学习”控制分子系统(结构,热力学和动力学/机制)的粗粒度动力学模型。通过集成不同的数据源,这种建模方法协调了自下而上和自上而下的方法。这种方法产生的功能构建块,可以嵌入到高阶模拟,以弥合差距的宏观系统。这种建模框架可以作为一个基石,以整合大量的化学数据到定量的,机械的和可理解的模型。这样的模型可以解释不同的分子组分如何组织和相互作用,作为时间和空间的函数,在宏观尺度上执行功能。特别是,开发的框架适用于调查一个特定的生物分子过程:结合肽的主要组织相容性复合物(MHC)proteines.This奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tensor-based computation of metastable and coherent sets
亚稳态和相干集的基于张量的计算
- DOI:10.1016/j.physd.2021.133018
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Nüske, Feliks;Gelß, Patrick;Klus, Stefan;Clementi, Cecilia
- 通讯作者:Clementi, Cecilia
Localizing Frustration in Proteins Using All-Atom Energy Functions
- DOI:10.1021/acs.jpcb.9b01545
- 发表时间:2019-05-30
- 期刊:
- 影响因子:3.3
- 作者:Chen, Justin;Schafer, Nicholas P.;Clementi, Cecilia
- 通讯作者:Clementi, Cecilia
Fast track to structural biology
结构生物学快速通道
- DOI:10.1038/s41557-021-00814-y
- 发表时间:2021
- 期刊:
- 影响因子:21.8
- 作者:Clementi, Cecilia
- 通讯作者:Clementi, Cecilia
Extensible and Scalable Adaptive Sampling on Supercomputers
- DOI:10.1021/acs.jctc.0c00991
- 发表时间:2020-12-08
- 期刊:
- 影响因子:5.5
- 作者:Hruska, Eugen;Balasubramanian, Vivekanandan;Clementi, Cecilia
- 通讯作者:Clementi, Cecilia
Porting Adaptive Ensemble Molecular Dynamics Workflows to the Summit Supercomputer
将自适应集成分子动力学工作流程移植到 Summit 超级计算机
- DOI:10.1007/978-3-030-34356-9_30
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:John Ossyra, Ada Sedova
- 通讯作者:John Ossyra, Ada Sedova
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anatoly Kolomeisky其他文献
What Is The Nature Of Interactions Between DNA And Nanopores Fabricated In Thin Silicon Nitride Membranes?
- DOI:
10.1016/j.bpj.2008.12.3860 - 发表时间:
2009-02-01 - 期刊:
- 影响因子:
- 作者:
Meni Wanunu;Anatoly Kolomeisky;Amit Meller - 通讯作者:
Amit Meller
Single Molecule Studies of Polyadenylic Acid Helix-Coil Kinetics using Nanopore
- DOI:
10.1016/j.bpj.2009.12.2287 - 发表时间:
2010-01-01 - 期刊:
- 影响因子:
- 作者:
Jianxun Lin;Anatoly Kolomeisky;Amit Meller - 通讯作者:
Amit Meller
Anatoly Kolomeisky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anatoly Kolomeisky', 18)}}的其他基金
Quantifying the Role of Heterogeneity in Mechanisms of Chemical and Biological Processes
量化化学和生物过程机制中异质性的作用
- 批准号:
2246878 - 财政年份:2023
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
Understanding the Role of Stochasticity in Chemical and Biological Processes
了解随机性在化学和生物过程中的作用
- 批准号:
1953453 - 财政年份:2020
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
Collaborative Research: Theoretical and Experimental Investigation of Molecular Mechanism of DNA Synaptic Complex Assembly and Dynamics
合作研究:DNA突触复合体组装和动力学分子机制的理论和实验研究
- 批准号:
1941106 - 财政年份:2020
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
Theoretical Investigations of Dynamic Aspects of Protein-DNA Interactions
蛋白质-DNA 相互作用动态方面的理论研究
- 批准号:
1664218 - 财政年份:2017
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
D3SC: EAGER: Data-driven design of molecular models from microscopic dynamics and experimental data
D3SC:EAGER:根据微观动力学和实验数据进行数据驱动的分子模型设计
- 批准号:
1738990 - 财政年份:2017
- 资助金额:
$ 51万 - 项目类别:
Standard Grant
Theoretical Analysis of Protein Search for Targets on DNA Using Discrete-State Stochastic Framework
使用离散状态随机框架对 DNA 上的蛋白质搜索进行理论分析
- 批准号:
1360979 - 财政年份:2014
- 资助金额:
$ 51万 - 项目类别:
Continuing Grant
Large Scale Synthesis of Near-Monodisperse Gold Nanorods and their Assembly into 3D Anisotropic Single Crystals
近单分散金纳米棒的大规模合成及其组装成 3D 各向异性单晶
- 批准号:
1105878 - 财政年份:2011
- 资助金额:
$ 51万 - 项目类别:
Continuing Grant
CAREER: Theoretical Investigations of Non-Equlibrium Processes in Chemistry and Biology
职业:化学和生物学中非平衡过程的理论研究
- 批准号:
0237105 - 财政年份:2003
- 资助金额:
$ 51万 - 项目类别:
Continuing Grant