Ergodic Theory of Non-Amenable Group Actions

不服从群体行为的历经理论

基本信息

  • 批准号:
    1900386
  • 负责人:
  • 金额:
    $ 32.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-06-01 至 2022-09-30
  • 项目状态:
    已结题

项目摘要

Classical dynamics studies how systems change in time. Ergodic theory focuses on the statistical behavior of dynamical systems. Applications of ergodic theory are widespread: from traffic modeling to aerospace engineering and population dynamics. It is natural and of practical importance to generalize the role of time in a dynamical system to more complicated groups of symmetries. This generalized notion of dynamics leads to applications in statistical physics, number theory and geometry. However, new tools are needed especially in the particular case when the group of symmetries is non-amenable which means that boundary phenomena are too significant to be safely ignored. Non-amenable groups naturally arise in many parts of mathematics such as geometry and number theory. This project is concerned with developing the tools needed to analyze the statistical behavior of non-amenable group actions by generalizing ergodic theory to this context. The research goals of this project are: 1) Continue developing sofic entropy theory, which is a vast generalization of Kolmogorov-Sinai entropy to actions of sofic groups, a class of groups that contains all amenable groups and residually finite groups. One ambitious goal is to classify the mixing Markov chains over free groups using asymptotic geometric invariants of associated model spaces. 2) Classify sofic approximations of low-dimensional groups (using geometric techniques), with an eye towards using the results to construct the first known non-sofic groups from amalgams of low-dimensional groups. 3) Explore the limits of pointwise ergodic theorems for geometrically defined groups (e.g. Lie groups, CAT(0) cubulated groups, relatively hyperbolic groups) via the measured-equivalence techniques developed by the principal investigator and Nevo and the ideas behind the recent L^1-counterexample of Tao. Also develop new multiplicative ergodic theorems for cocycles taking values in tracial von Neumann algebras. 4) Import tools from geometric group theory into the study of measured equivalence relations (MERs) through the use of metric bundles in place of actions, graphings in place of Cayley graphs and so on. More specific goals include proving analogs of the Tits alternative for MERs and classifying the normal sub-equivalence relations of low-dimensional MERs.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
经典动力学研究系统如何随时间变化。遍历理论关注的是动力系统的统计行为。遍历理论的应用非常广泛:从交通建模到航空航天工程和人口动力学。将时间在动力系统中的作用推广到更复杂的对称群是很自然的,而且具有实际意义。这种广义的动力学概念在统计物理、数论和几何中都有应用。然而,新的工具是必要的,特别是在特殊情况下,当组的对称性是不可服从的,这意味着边界现象太重要,不能安全地忽略。不可服从群自然出现在许多数学领域,如几何和数论。该项目关注的是通过将遍历理论推广到这一背景,开发分析不可服从群体行为的统计行为所需的工具。本课题的研究目标是:1)继续发展sofic entropy theory,这是将Kolmogorov-Sinai熵推广到sofic groups的行为,sofic groups是一类包含所有可服从群和剩余有限群的群。一个雄心勃勃的目标是利用相关模型空间的渐近几何不变量对自由群上的混合马尔可夫链进行分类。2)对低维群的sofic近似进行分类(使用几何技术),着眼于利用结果从低维群的混合物中构造已知的第一个非sofic群。3)探索几何定义群(如李群,CAT(0)计算群,相对双曲群)的点遍历定理的极限,通过由首席研究员和Nevo开发的测量等效技术以及最近Tao的L^1反例背后的思想。也发展了在迹迹冯·诺伊曼代数中取值的环的新的乘法遍历定理。4)将几何群论中的工具引入到可测量等价关系(MERs)的研究中,方法是用度量束代替作用,用图解代替凯利图等。更具体的目标包括证明MERs的Tits替代品的类似物和分类低维MERs的正常亚等价关系。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sofic homological invariants and the Weak Pinsker Property
A topological dynamical system with two different positive sofic entropies
具有两个不同正索菲熵的拓扑动力系统
  • DOI:
    10.1090/btran/101
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Airey, Dylan;Bowen, Lewis;Lin, Yuqing
  • 通讯作者:
    Lin, Yuqing
Superrigidity, measure equivalence, and weak Pinsker entropy
超刚性、测度等价和弱平斯克熵
  • DOI:
    10.4171/ggd/647
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    Bowen, Lewis;Tucker-Drob, Robin
  • 通讯作者:
    Tucker-Drob, Robin
Flexible stability and nonsoficity
灵活稳定、不亲和
Failure of the $$L^1$$ pointwise ergodic theorem for $$\mathrm {PSL}_2(\mathbb {R})$$
$$mathrm {PSL}_2(mathbb {R})$$ 的 $$L^1$$ 逐点遍历定理失败
  • DOI:
    10.1007/s10711-019-00487-5
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0.5
  • 作者:
    Bowen, Lewis;Burton, Peter
  • 通讯作者:
    Burton, Peter
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lewis Bowen其他文献

On a co-induction question of Kechris
  • DOI:
    10.1007/s11856-012-0071-7
  • 发表时间:
    2012-05-29
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Lewis Bowen;Robin D. Tucker-Drob
  • 通讯作者:
    Robin D. Tucker-Drob
A Generalization of the prime geodesic theorem to counting conjugacy classes of free subgroups
  • DOI:
    10.1007/s10711-006-9114-8
  • 发表时间:
    2007-01-17
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Lewis Bowen
  • 通讯作者:
    Lewis Bowen
Entropy for actions of free groups under bounded orbit-equivalence
  • DOI:
    10.1007/s11856-024-2642-9
  • 发表时间:
    2024-08-04
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Lewis Bowen;Yuqing Frank Lin
  • 通讯作者:
    Yuqing Frank Lin
Integrable orbit equivalence rigidity for free groups
  • DOI:
    10.1007/s11856-017-1553-4
  • 发表时间:
    2017-07-26
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Lewis Bowen
  • 通讯作者:
    Lewis Bowen
Optimally Dense Packings of Hyperbolic Space
  • DOI:
    10.1023/b:geom.0000022857.62695.15
  • 发表时间:
    2004-03-01
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Lewis Bowen;Charles Radin
  • 通讯作者:
    Charles Radin

Lewis Bowen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lewis Bowen', 18)}}的其他基金

Ergodic Theory Beyond Amenability
超越顺应性的遍历理论
  • 批准号:
    2154680
  • 财政年份:
    2022
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Standard Grant
Research Training Group in Groups and Dynamics
群体与动力学研究训练组
  • 批准号:
    1937215
  • 财政年份:
    2020
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Continuing Grant
Ergodic Theory of Nonamenable Group Actions
无名群体行为的历经理论
  • 批准号:
    1500389
  • 财政年份:
    2015
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Continuing Grant
CAREER: Ergodic Theory of Nonamenable Group Actions
职业生涯:无名群体行为的历经理论
  • 批准号:
    1313520
  • 财政年份:
    2012
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Standard Grant
The Ergodic Theory of Nonamenable Group Actions
无名群体行为的历经理论
  • 批准号:
    1261671
  • 财政年份:
    2012
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Standard Grant
CAREER: Ergodic Theory of Nonamenable Group Actions
职业生涯:无名群体行为的历经理论
  • 批准号:
    0954606
  • 财政年份:
    2010
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Standard Grant
The Ergodic Theory of Nonamenable Group Actions
无名群体行为的历经理论
  • 批准号:
    0968762
  • 财政年份:
    2009
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Standard Grant
The Ergodic Theory of Nonamenable Group Actions
无名群体行为的历经理论
  • 批准号:
    0901835
  • 财政年份:
    2009
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
  • 批准号:
    12247163
  • 批准年份:
    2022
  • 资助金额:
    18.00 万元
  • 项目类别:
    专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
  • 批准号:
    12126512
  • 批准年份:
    2021
  • 资助金额:
    12.0 万元
  • 项目类别:
    数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
  • 批准号:
    61671064
  • 批准年份:
    2016
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

Non-perturbative Conformal Field Theory in Quantum Gravity and the Laboratory (Exact CFT)
量子引力中的非微扰共形场论和实验室(精确 CFT)
  • 批准号:
    EP/Z000106/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Research Grant
Non-Born-Oppenheimer Effects in the Framework of Multicomponent Time-Dependent Density Functional Theory
多分量时变密度泛函理论框架中的非玻恩奥本海默效应
  • 批准号:
    2415034
  • 财政年份:
    2024
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Continuing Grant
Ergodic theory and multifractal analysis for non-uniformly hyperbolic dynamical systems with a non-compact state space
非紧状态空间非均匀双曲动力系统的遍历理论和多重分形分析
  • 批准号:
    24K06777
  • 财政年份:
    2024
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Hypoelliptic and Non-Markovian stochastic dynamical systems in machine learning and mathematical finance: from theory to application
机器学习和数学金融中的亚椭圆和非马尔可夫随机动力系统:从理论到应用
  • 批准号:
    2420029
  • 财政年份:
    2024
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Standard Grant
Non-Abelian Hodge Theory and Transcendence
非阿贝尔霍奇理论与超越
  • 批准号:
    2401383
  • 财政年份:
    2024
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Standard Grant
Sensing Beyond Barriers via Non-Linearities: Theory, Algorithms and Applications
通过非线性传感超越障碍:理论、算法和应用
  • 批准号:
    MR/Y003926/1
  • 财政年份:
    2024
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Fellowship
Collaborative Research: Advances in the Theory and Practice of Non-Euclidean Statistics
合作研究:非欧几里得统计理论与实践的进展
  • 批准号:
    2311058
  • 财政年份:
    2023
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Continuing Grant
Non-Perturbative Methods in Field Theory and Many-Body Physics
场论和多体物理中的非微扰方法
  • 批准号:
    2310283
  • 财政年份:
    2023
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Continuing Grant
Conference: Motivic and non-commutative aspects of enumerative geometry, Homotopy theory, K-theory, and trace methods
会议:计数几何的本构和非交换方面、同伦理论、K 理论和迹方法
  • 批准号:
    2328867
  • 财政年份:
    2023
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Standard Grant
Development of effective and accurate non-conventional solution methods for shape inverse problems: theory and numerics
开发有效且准确的形状反问题非常规求解方法:理论和数值
  • 批准号:
    23K13012
  • 财政年份:
    2023
  • 资助金额:
    $ 32.97万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了