Sensing Beyond Barriers via Non-Linearities: Theory, Algorithms and Applications

通过非线性传感超越障碍:理论、算法和应用

基本信息

  • 批准号:
    MR/Y003926/1
  • 负责人:
  • 金额:
    $ 75.79万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Digital data capture is the backbone of all modern-day systems and the "Digital Revolution" has been aptly termed as the Third Industrial Revolution. Underpinning the digital representation is the Shannon-Nyquist sampling theorem and more recent developments such as compressive sensing approaches. The fact that there is a physical limit to which sensors can measure amplitudes poses a fundamental bottleneck when it comes to leveraging the performance guaranteed by recovery algorithms. In practice, whenever a physical signal exceeds the maximum recordable range, the sensor saturates, resulting in permanent information loss. Examples include (a) dosimeter saturation during the Chernobyl reactor accident, reporting radiation levels far lower than the true value and (b) loss of visual cues in self-driving cars coming out of a tunnel (due to sudden exposure to light). To reconcile this gap between theory and practice, we have introduced the Unlimited Sensing framework or the USF that is based on a co-design of hardware and algorithms. On the hardware front, our work is based on a radically different analog-to-digital converter (ADC) design, which allows for the ADCs to produce modulo or folded samples. On the algorithms front, we develop new, mathematically guaranteed recovery strategies. In the context of the USF, our goal is to expand the frontiers of sensing and imaging beyond the restrictions imposed by conventional sampling architectures. For this purpose we resort to non-linear acquisition strategies in the sensing pipeline. Three main frontiers are considered: (1) Dynamic Range Barrier.Given modulo samples, here, we study the mathematical aspects of recovery of signals that belong to shift-invariant spaces (SIS). Within the SIS model, we will study (a) wavelet and spline families which are the key to modeling images and (b) multi-band signals that naturally arise in applications such as radar and radio communication. We also develop robust reconstruction algorithms for recovery from modulo samples that are validated on customized hardware. There on, we extend the utility of such algorithms for one-bit modulo sampling. (2) Resolution Barrier.Recovering spikes from low-pass filtered measurements is a classical problem and is known as super-resolution. However, in many practical cases of interest, the pulse or filter may be unknown due to a lack of calibration or physical properties of propagation and transmission. In the USF context, we pose and study the blind sparse super-resolution problem and extend this case when the acquisition pipeline consists of one-bit modulo architecture. This line of work finds applications in time-of-flight imaging, terahertz spectroscopy and photo-acoustic tomography. (3) Imaging-related Barrier.We develop efficient reconstruction algorithms for multi-dimensional signals that live on a manifold. This generalizes the HDR image recovery problem. We also develop efficient reconstruction algorithms for Modulo Radon Transform enabling HDR tomography. Our algorithms are validated on experimentally acquired data with the help of inter-disciplinary and multi-university collaborations.
数字数据采集是所有现代系统的支柱,“数字革命”被恰当地称为第三次工业革命。支撑数字表示的是Shannon-Nyquist采样定理和最近的发展,如压缩感知方法。当涉及到利用恢复算法所保证的性能时,传感器测量振幅的物理限制构成了一个基本瓶颈。实际上,每当物理信号超过最大可记录范围时,传感器就会饱和,从而导致永久的信息丢失。例子包括:(a)切尔诺贝利反应堆事故期间剂量计饱和,报告的辐射水平远低于真实值;(b)自动驾驶汽车驶出隧道时(由于突然暴露在光线下)失去视觉线索。为了调和理论与实践之间的差距,我们引入了基于硬件和算法协同设计的无限传感框架或USF。在硬件方面,我们的工作基于完全不同的模数转换器(ADC)设计,该设计允许ADC产生模或折叠样本。在算法方面,我们开发了新的,数学上保证的恢复策略。在USF的背景下,我们的目标是扩展传感和成像的前沿,超越传统采样架构的限制。为此,我们在传感管道中采用非线性采集策略。考虑了三个主要的边界:(1)动态范围障碍。在给定模样本的情况下,我们研究了移不变空间(SIS)信号恢复的数学方面。在SIS模型中,我们将研究(a)小波和样条家族,这是建模图像的关键;(b)雷达和无线电通信等应用中自然出现的多波段信号。我们还开发了强大的重建算法,用于从定制硬件上验证的模样本中恢复。在此基础上,我们扩展了这种算法在位模采样中的应用。(2)决议障碍。从低通滤波测量中恢复尖峰是一个经典问题,被称为超分辨率。然而,在许多实际情况下,由于缺乏校准或传播和传输的物理特性,脉冲或滤波器可能是未知的。在USF环境下,我们提出并研究了盲稀疏超分辨率问题,并扩展了采集管道由1位模结构组成的情况。这项工作在飞行时间成像、太赫兹光谱学和光声断层扫描中得到了应用。(3)成像相关屏障。我们针对流形上的多维信号开发了高效的重构算法。这概括了HDR图像恢复问题。我们还开发了高效的模Radon变换重建算法,使HDR断层扫描。我们的算法在跨学科和多大学合作的帮助下通过实验获得的数据进行验证。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ayush Bhandari其他文献

Event-Driven Modulo Sampling
事件驱动模采样
Nonuniform Sampling of Echoes of Light
光回波的非均匀采样
Time Encoding of Sparse Signals with Flexible Filters
使用灵活滤波器对稀疏信号进行时间编码
Multidimensional Unlimited Sampling: A Geometrical Perspective
多维无限采样:几何视角
FRI sampling and time-varying pulses: Some theory and four short stories
FRI 采样和时变脉冲:一些理论和四个短篇故事

Ayush Bhandari的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ayush Bhandari', 18)}}的其他基金

Sensing Beyond Barriers: Theory, Algorithms and Applications
超越障碍的感知:理论、算法和应用
  • 批准号:
    MR/S034897/1
  • 财政年份:
    2020
  • 资助金额:
    $ 75.79万
  • 项目类别:
    Fellowship

相似海外基金

Amalgamating Evidence About Causes: Medicine, the Medical Sciences, and Beyond
合并有关原因的证据:医学、医学科学及其他领域
  • 批准号:
    AH/Y007654/1
  • 财政年份:
    2024
  • 资助金额:
    $ 75.79万
  • 项目类别:
    Research Grant
Democratizing HIV science beyond community-based research
将艾滋病毒科学民主化,超越社区研究
  • 批准号:
    502555
  • 财政年份:
    2024
  • 资助金额:
    $ 75.79万
  • 项目类别:
LSS_BeyondAverage: Probing cosmic large-scale structure beyond the average
LSS_BeyondAverage:探测超出平均水平的宇宙大尺度结构
  • 批准号:
    EP/Y027906/1
  • 财政年份:
    2024
  • 资助金额:
    $ 75.79万
  • 项目类别:
    Research Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 75.79万
  • 项目类别:
    Standard Grant
Collaborative Research: Research Infrastructure: MorphoCloud: A Cloud Powered, Open-Source Platform For Research, Teaching And Collaboration In 3d Digital Morphology And Beyond
协作研究:研究基础设施:MorphoCloud:云驱动的开源平台,用于 3D 数字形态学及其他领域的研究、教学和协作
  • 批准号:
    2301410
  • 财政年份:
    2024
  • 资助金额:
    $ 75.79万
  • 项目类别:
    Standard Grant
Beyond thiols, beyond gold: Novel NHC-stabilized nanoclusters in catalysis
超越硫醇,超越金:催化中新型 NHC 稳定纳米团簇
  • 批准号:
    23K21120
  • 财政年份:
    2024
  • 资助金额:
    $ 75.79万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Droughts Beyond Hydro-climatological Extremes
超出水文气候极端值的干旱
  • 批准号:
    24K17352
  • 财政年份:
    2024
  • 资助金额:
    $ 75.79万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Research Infrastructure: MorphoCloud: A Cloud Powered, Open-Source Platform For Research, Teaching And Collaboration In 3d Digital Morphology And Beyond
协作研究:研究基础设施:MorphoCloud:云驱动的开源平台,用于 3D 数字形态学及其他领域的研究、教学和协作
  • 批准号:
    2301405
  • 财政年份:
    2024
  • 资助金额:
    $ 75.79万
  • 项目类别:
    Continuing Grant
CAREER: Operating an Optical Atomic Clock Beyond the Laser Coherence and below the Projection Limit
职业:操作超出激光相干性且低于投影极限的光学原子钟
  • 批准号:
    2339487
  • 财政年份:
    2024
  • 资助金额:
    $ 75.79万
  • 项目类别:
    Continuing Grant
CAREER: Optimal Transport Beyond Probability Measures for Robust Geometric Representation Learning
职业生涯:超越概率测量的最佳传输以实现稳健的几何表示学习
  • 批准号:
    2339898
  • 财政年份:
    2024
  • 资助金额:
    $ 75.79万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了