Characterization of Macromolecular Dynamics Using Para-hydrogen Induced Polarization of Nuclear Spins
利用仲氢诱导核自旋极化表征大分子动力学
基本信息
- 批准号:1900406
- 负责人:
- 金额:$ 42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this project funded by the Chemical Structure, Dynamics and Mechanisms A (CSDM-A) program of the Chemistry Division, Professor Christian Hilty of Texas A&M University and a team of graduate students are using nuclear magnetic resonance spectroscopy (NMR, a cousin of the magnetic resonance imaging used in medical technology) to investigate how proteins fold to attain their three-dimensional structure. The structure, structural changes and molecular interactions of proteins are responsible for their function in the most basic processes of life. While it is possible to determine the three-dimensional arrangement of atoms even in these large molecules, the measurements often are too slow to resolve changes that occur over time. Proteins normally embedded in the cell membrane pose additional challenges, because they depend on the interactions with lipid molecules even when they are purified for study. In this project, the investigators are overcoming some of these challenges by using a method called para-hydrogen induced polarization of nuclear spins, which enhances the signals of nuclear magnetic resonance and makes it possible to achieve these measurements more rapidly. With the application of these methods, the project contributes insights into the longstanding problem of membrane protein folding, of which many aspects remain unknown despite the knowledge of the folded, three-dimensional structures of the molecules involved. The graduate students involved in this research project are gaining knowledge and skills that will be valuable in their future career pursuits, be these in fundamental chemistry research or in the applications of NMR in chemical analysis, medicine, and other areas of science and technology.The project develops methods for the characterization of structural changes in non-equilibrium macromolecular processes, motivated by the goal to elucidate the mechanisms of folding and insertion of beta-barrel membrane proteins. The proven ability of NMR to provide chemical selectivity for the determination of structure and molecular dynamics is exploited. NMR spectroscopy is made compatible with the elucidation of these structures under non-equilibrium conditions through the use of hyperpolarization by para-hydrogen induced polarization. Hydrogen enriched in the para-spin state is delivered to biomolecular samples, to generate hyperpolarization of small molecules in-situ. A first aim demonstrates the use of this para-hydrogen enhancement for characterizing intermolecular interactions with the model protein dihydrofolate reductase. Multi-dimensional protein NMR experiments are developed that exploit the ability to regenerate and transfer hyperpolarization to the protein, and that enable measurement of the binding interface structure. In a second aim, catalysts for para-hydrogen polarization are designed, which are specifically compatible with the application to samples of biological macromolecules. Finally, in a third aim, NMR spectroscopy of thus hyperpolarized molecules is applied to the structural and kinetic characterization of the membrane insertion process of the beta-barrel proteins OmpX and OmpA, and of their interaction with chaperones. The methods developed in aims 1 and 2 provide the resolution necessary to follow these macromolecular processes on relevant time scales. In addition to the aforementioned student training in physical and biophysical chemistry and nuclear magnetic resonance s techniques, the educational component of this research project includes the development of low-field NMR instrumentation for undergraduate laboratories (and eventual public demonstrations), and enzyme catalysis themed experimental kits ("ChemBoxes") for K-12 students and teachers.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在这个由化学部化学结构,动力学和机制A(CSDM-A)计划资助的项目中,德克萨斯州A M大学的Christian Hilty教授和一组研究生正在使用核磁共振光谱(NMR,医疗技术中使用的磁共振成像的表亲)来研究蛋白质如何折叠以获得其三维结构。蛋白质的结构、结构变化和分子相互作用决定了它们在生命最基本过程中的功能。虽然即使在这些大分子中也可以确定原子的三维排列,但测量通常太慢,无法解决随时间发生的变化。通常嵌入细胞膜的蛋白质带来了额外的挑战,因为它们依赖于与脂质分子的相互作用,即使它们被纯化用于研究。在这个项目中,研究人员正在通过使用一种称为仲氢诱导的核自旋极化的方法来克服其中的一些挑战,这种方法增强了核磁共振的信号,并使更快地实现这些测量成为可能。随着这些方法的应用,该项目有助于深入了解膜蛋白折叠的长期问题,尽管有关分子的折叠三维结构的知识,但其中许多方面仍然未知。 参与该研究项目的研究生将获得对他们未来职业追求有价值的知识和技能,无论是基础化学研究还是NMR在化学分析,医学和其他科学技术领域的应用。该项目开发了非平衡大分子过程中结构变化的表征方法,目的是阐明β-桶膜蛋白的折叠和插入机制。利用核磁共振的证明能力,提供化学选择性的结构和分子动力学的测定。NMR光谱是兼容的,通过使用超极化的仲氢诱导极化的非平衡条件下,这些结构的说明。富含对位自旋态的氢被输送到生物分子样品中,以原位产生小分子的超极化。第一个目的表明使用这种仲氢增强表征与模型蛋白二氢叶酸还原酶的分子间相互作用。多维蛋白质NMR实验开发,利用再生和转移超极化的蛋白质的能力,并使结合界面结构的测量。在第二个目的中,设计用于仲氢极化的催化剂,其特别地与生物大分子样品的应用相容。最后,在第三个目标中,因此超极化分子的NMR光谱被应用于β-桶蛋白OmpX和OmpA的膜插入过程的结构和动力学表征,以及它们与分子伴侣的相互作用。目标1和2中开发的方法提供了在相关时间尺度上跟踪这些大分子过程所需的分辨率。 除了上述物理和生物物理化学和核磁共振技术的学生培训外,本研究项目的教育部分还包括为本科实验室开发低场核磁共振仪器(以及最终的公众示威),和酶催化主题的实验套件该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tunable iridium catalyst designs with bidentate N-heterocyclic carbene ligands for SABRE hyperpolarization of sterically hindered substrates
具有二齿N-杂环卡宾配体的可调谐铱催化剂设计,用于空间位阻基底的SABRE超极化
- DOI:10.1039/d0cc06840c
- 发表时间:2020
- 期刊:
- 影响因子:4.9
- 作者:Pham, Pierce;Hilty, Christian
- 通讯作者:Hilty, Christian
Interfacing Liquid State Hyperpolarization Methods with NMR Instrumentation
液态超极化方法与 NMR 仪器的接口
- DOI:10.1016/j.jmro.2022.100052
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Pham, Pierce;Mandal, Ratnamala;Qi, Chang;Hilty, Christian
- 通讯作者:Hilty, Christian
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christian Hilty其他文献
Calculations of neon nuclear-spin optical rotation, Verdet and hyperfine constants with configuration-interaction many-body perturbation theory
- DOI:
10.1140/epjd/e2019-90431-7 - 发表时间:
2019-07-25 - 期刊:
- 影响因子:1.500
- 作者:
Igor Savukov;Dmytro Filin;Yue Zhu;Rafael Castro;Christian Hilty - 通讯作者:
Christian Hilty
Large Faraday rotation in pyrolysis synthesized carbon dots
- DOI:
10.1016/j.carbon.2024.119895 - 发表时间:
2025-02-01 - 期刊:
- 影响因子:
- 作者:
Zefan Zhang;Igor Savukov;Christian Hilty - 通讯作者:
Christian Hilty
Controlling membrane permeability with bacterial porins: application to encapsulated enzymes.
用细菌孔蛋白控制膜通透性:应用于封装酶。
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
Mathias Winterhalter;Christian Hilty;S. M. Bezrukov;S. M. Bezrukov;Corinne Nardin;Wolfgang Meier;Didier Fournier - 通讯作者:
Didier Fournier
Christian Hilty的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christian Hilty', 18)}}的其他基金
Collaborative Research: Nuclear Spin Optical Rotation of Hyperpolarized Liquids and Solids
合作研究:超极化液体和固体的核自旋旋光
- 批准号:
2108822 - 财政年份:2021
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Characterization of Solvent-Macromolecule Interactions using Dissolution Dynamic Nuclear Polarization
使用溶解动态核极化表征溶剂-大分子相互作用
- 批准号:
1362691 - 财政年份:2014
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
Collaborative Research: DNP-Enhanced Nuclear-Spin Optical-Rotation Spectroscopy
合作研究:DNP 增强核自旋旋光光谱
- 批准号:
1404548 - 财政年份:2014
- 资助金额:
$ 42万 - 项目类别:
Standard Grant
CAREER: Biochemical Reaction Mechanisms by Real-Time, Hyperpolarization Enhanced Nuclear Magnetic Resonance
职业:通过实时超极化增强核磁共振研究生化反应机制
- 批准号:
0846402 - 财政年份:2009
- 资助金额:
$ 42万 - 项目类别:
Continuing Grant
相似海外基金
RM1 Center on Macromolecular Dynamics by NMR Spectroscopy at the New York Structural Biology Center (CoMD/NMR)
纽约结构生物学中心 (CoMD/NMR) 的 RM1 核磁共振波谱大分子动力学中心
- 批准号:
10654062 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
RM1 Center on Macromolecular Dynamics by NMR Spectroscopy at the New York Structural Biology Center (CoMD/NMR)
纽约结构生物学中心 (CoMD/NMR) 的 RM1 核磁共振波谱大分子动力学中心
- 批准号:
10412493 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Controlling the outcome of reactions in macromolecular systems: Measurement of structural dynamics during synthesis and degradation in biologically relevant polymers
控制大分子系统中的反应结果:生物相关聚合物合成和降解过程中结构动力学的测量
- 批准号:
RGPIN-2018-05444 - 财政年份:2022
- 资助金额:
$ 42万 - 项目类别:
Discovery Grants Program - Individual
Controlling the outcome of reactions in macromolecular systems: Measurement of structural dynamics during synthesis and degradation in biologically relevant polymers
控制大分子系统中的反应结果:生物相关聚合物合成和降解过程中结构动力学的测量
- 批准号:
RGPIN-2018-05444 - 财政年份:2021
- 资助金额:
$ 42万 - 项目类别:
Discovery Grants Program - Individual
Lumick's C-Trap instrument for single-molecule analysis of macromolecular dynamics
Lumick 用于大分子动力学单分子分析的 C-Trap 仪器
- 批准号:
10175508 - 财政年份:2021
- 资助金额:
$ 42万 - 项目类别:
Controlling the outcome of reactions in macromolecular systems: Measurement of structural dynamics during synthesis and degradation in biologically relevant polymers
控制大分子系统中的反应结果:生物相关聚合物合成和降解过程中结构动力学的测量
- 批准号:
RGPIN-2018-05444 - 财政年份:2020
- 资助金额:
$ 42万 - 项目类别:
Discovery Grants Program - Individual
Controlling the outcome of reactions in macromolecular systems: Measurement of structural dynamics during synthesis and degradation in biologically relevant polymers
控制大分子系统中的反应结果:生物相关聚合物合成和降解过程中结构动力学的测量
- 批准号:
RGPIN-2018-05444 - 财政年份:2019
- 资助金额:
$ 42万 - 项目类别:
Discovery Grants Program - Individual
Macromolecular dynamics and conformational changes in biological function
生物功能中的大分子动力学和构象变化
- 批准号:
10546431 - 财政年份:2019
- 资助金额:
$ 42万 - 项目类别:
Macromolecular dynamics and conformational changes in biological function
生物功能中的大分子动力学和构象变化
- 批准号:
10318591 - 财政年份:2019
- 资助金额:
$ 42万 - 项目类别:
Controlling the outcome of reactions in macromolecular systems: Measurement of structural dynamics during synthesis and degradation in biologically relevant polymers
控制大分子系统中的反应结果:生物相关聚合物合成和降解过程中结构动力学的测量
- 批准号:
RGPIN-2018-05444 - 财政年份:2018
- 资助金额:
$ 42万 - 项目类别:
Discovery Grants Program - Individual