AF: Medium: Theory of Computation - New Algorithmic and Hardness Techniques

AF:媒介:计算理论 - 新算法和硬度技术

基本信息

  • 批准号:
    1900460
  • 负责人:
  • 金额:
    $ 120万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

The goal of this project is developing new theoretical tools for understanding the power and limits of efficient computation. Underlying every computer application, (and indeed computer industry, from networks to security to optimization to storage and so on) available today are ingenious algorithms that utilize the various important resources (time, space, communication) in an efficient manner. However, for not-yet-existing applications (or industries), is their unavailability due to the lack of efficient algorithms that may yet be discovered, or are the underlying problems really intractable, and thus impossible to solve efficiently? This project seeks both new efficient algorithms, as well as new methods for proving intractability. The ideas to be explored by the project use tools and connections to problems from several areas in mathematics, physics and information theory, and promise progress on some of the deepest problems in computational complexity.On the algorithmic side, the project will focus on a wide variety of optimization problems in which the search space has some symmetry. The project will explore algebraic and geometric techniques to analyze both alternating-minimization and geodesic algorithms to solve new problems for which efficient solutions do not yet exist: these include classes of non-convex problems and exponentially large linear programs. On the intractability side, this research will focus on extending a new method of "lifting" hardness results for complex computational models, such as Boolean circuits, proof systems, communication networks and semi-definite programming, from hardness results for much simpler models such as decision trees and polynomials.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目标是开发新的理论工具,以了解有效计算的能力和局限性。当今可用的每个计算机应用程序(实际上是计算机行业,从网络到安全、优化到存储等等)的底层都是巧妙的算法,它们以高效的方式利用各种重要的资源(时间、空间、通信)。然而,对于尚未存在的应用程序(或行业),它们的不可用是因为缺乏可能被发现的有效算法,还是潜在的问题真的很难解决,因此不可能有效地解决?这个项目既寻找新的高效算法,也寻找证明难解性的新方法。该项目要探索的想法使用了数学、物理和信息论中几个领域的工具和问题的联系,并承诺在计算复杂性的一些最深层次的问题上取得进展。在算法方面,该项目将专注于搜索空间具有一定对称性的各种优化问题。该项目将探索代数和几何技术来分析交替最小化和测地线算法,以解决尚不存在有效解决方案的新问题:其中包括一类非凸问题和指数型大型线性规划。在困难方面,这项研究将专注于扩展一种新的方法,从简单得多的模型(如决策树和多项式)的困难结果扩展到复杂计算模型(如布尔电路、证明系统、通信网络和半定规划)的困难结果。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(35)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the tensor rank of the 3 x 3 permanent and determinant
关于 3 x 3 常量和行列式的张量秩
The Power of Unentangled Quantum Proofs with Non-negative Amplitudes
KRW Composition Theorems via Lifting
Lifting with Simple Gadgets and Applications to Circuit and Proof Complexity
A framework for quadratic form maximization over convex sets through nonconvex relaxations
通过非凸松弛实现凸集二次形式最大化的框架
  • DOI:
    10.1145/3406325.3451128
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bhattiprolu, Vijay;Lee, Euiwoong;Naor, Assaf
  • 通讯作者:
    Naor, Assaf
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Avi Wigderson其他文献

Derandomizing the Ahlswede-Winter matrix-valued Chernoff bound using pessimistic estimators, and applications
使用悲观估计器和应用程序对 Ahlswede-Winter 矩阵值切尔诺夫界限进行去随机化
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    1
  • 作者:
    Avi Wigderson;David Xiao
  • 通讯作者:
    David Xiao
Robust Local Testability of Tensor Products of LDPC Codes
LDPC码张量积的鲁棒局部可测试性
Electronic Colloquium on Computational Complexity Tiny Families of Functions with Random Properties: a Quality{size Trade{oo for Hashing
关于计算复杂性的电子研讨会具有随机属性的微小函数族:哈希的质量{大小交易{oo
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    O. Goldreich;Avi Wigderson
  • 通讯作者:
    Avi Wigderson
On rank vs. communication complexity
  • DOI:
    10.1007/bf01192527
  • 发表时间:
    1995-12-01
  • 期刊:
  • 影响因子:
    1.000
  • 作者:
    Noam Nisan;Avi Wigderson
  • 通讯作者:
    Avi Wigderson
Good permutation codes based on the shuffle-exchange network
  • DOI:
    10.1007/s11856-023-2498-4
  • 发表时间:
    2023-10-10
  • 期刊:
  • 影响因子:
    0.800
  • 作者:
    Oded Goldreich;Avi Wigderson
  • 通讯作者:
    Avi Wigderson

Avi Wigderson的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Avi Wigderson', 18)}}的其他基金

AF: Large: Theory of Computation - Pushing the State-of-the-Art
AF:大:计算理论 - 推动最先进的技术
  • 批准号:
    1412958
  • 财政年份:
    2014
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
CDI Type II: Pseudorandomness
CDI II 型:伪随机性
  • 批准号:
    0835373
  • 财政年份:
    2008
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Lie Groups, Representations and Discrete Mathematics
李群、表示和离散数学
  • 批准号:
    0542278
  • 财政年份:
    2006
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
ITR Medium Award: Computational Complexity Theory 2003
ITR 中奖:计算复杂性理论 2003
  • 批准号:
    0324906
  • 财政年份:
    2003
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
Special Year in Computational Complexity Theory
计算复杂性理论特别年
  • 批准号:
    9987077
  • 财政年份:
    2000
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Basic Research in Theoretical Computer Science and Discrete Mathematics
理论计算机科学与离散数学基础研究
  • 批准号:
    9987845
  • 财政年份:
    2000
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant

相似海外基金

CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
  • 批准号:
    2240982
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Developing Data-driven Robustness and Safety from Single Agent Settings to Stochastic Dynamic Teams: Theory and Applications
CPS:中:协作研究:从单代理设置到随机动态团队开发数据驱动的鲁棒性和安全性:理论与应用
  • 批准号:
    2240981
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Graph Neural Networks for Heterophilous Data: Advancing the Theory, Models, and Applications
合作研究:III:媒介:异质数据的图神经网络:推进理论、模型和应用
  • 批准号:
    2406648
  • 财政年份:
    2023
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Coupling of Modified Equation of State and Percolation Theory to Study Static and Dynamic Non-Equilibrium Phase Behavior of Heavy Oil in the Presence of Porous Medium
修正状态方程与渗流理论耦合研究多孔介质中稠油静态和动态非平衡相行为
  • 批准号:
    RGPIN-2019-06103
  • 财政年份:
    2022
  • 资助金额:
    $ 120万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: CIF: Medium: Learning to Control from Data: from Theory to Practice
合作研究:CIF:媒介:从数据中学习控制:从理论到实践
  • 批准号:
    2211210
  • 财政年份:
    2022
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Game Theory, Economics, and Mechanism Design for Blockchains
协作研究:SaTC:核心:媒介:区块链的博弈论、经济学和机制设计
  • 批准号:
    2212745
  • 财政年份:
    2022
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
Collaborative Research: III: Medium: Conditional Transport: Theory, Methods, Computation, and Applications
合作研究:III:媒介:条件传输:理论、方法、计算和应用
  • 批准号:
    2212418
  • 财政年份:
    2022
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Learning to Control from Data: from Theory to Practice
合作研究:CIF:媒介:从数据中学习控制:从理论到实践
  • 批准号:
    2211209
  • 财政年份:
    2022
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Taming Deep Unsupervised Representation Learning in Imaging: Theory and Algorithms
合作研究:CIF:媒介:驯服成像中的深度无监督表示学习:理论和算法
  • 批准号:
    2212065
  • 财政年份:
    2022
  • 资助金额:
    $ 120万
  • 项目类别:
    Continuing Grant
Collaborative Research: III: Medium: Graph Neural Networks for Heterophilous Data: Advancing the Theory, Models, and Applications
合作研究:III:媒介:异质数据的图神经网络:推进理论、模型和应用
  • 批准号:
    2212143
  • 财政年份:
    2022
  • 资助金额:
    $ 120万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了