AF: Medium: Collaborative Research: Sparse Approximation: Theory and Extensions

AF:媒介:协作研究:稀疏逼近:理论与扩展

基本信息

  • 批准号:
    1161196
  • 负责人:
  • 金额:
    $ 30.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-07-01 至 2016-06-30
  • 项目状态:
    已结题

项目摘要

In the past ten years the theoretical computer science, applied math and electrical engineering communities have extensively studied variants of the problem of ``solving" an under-determined linear system. One common mathematical feature that allows us to solve these problems is sparsity; roughly speaking, as long as the unknown vector does not contain too many non-zero components (or has a few dominating components), we can ``solve'' the under-determined system for the unknown vector. These problems are referred to as sparse approximation problems and have applications in diverse areas such as signal and image processing, biology, imaging, tomography, machine learning and others.The proposed research project aims to develop a comprehensive, rigorous theory of sparse approximation, broadly defined. The research proposal entails two complementary research directions: (1) a robust and more complete view of the combinatorial, algorithmic, and complexity-theoretic foundations of sparse approximations (including its generalization to functional sparse approximation where we want to ``solve" for some function of the unknown vector instead of the vector itself),(2) coupled with either its interactions or direct applications in other areas of theoretical computer science, from complexity theory to coding theory, and of electrical engineering, from signal processing to analog-to-digital converters.A general theory of sparse approximation that concentrates both on the optimal tradeoffs between competing parameters and the computational feasibility of attaining such tradeoffs will not only help explore the theoretical limits and possibilities of sparse approximations, but also feed algorithmic techniques and theoretical benchmarks back to its application areas. Sparse approximation already has been shown to have impact in a variety of fields, including imaging and signal processing, Internet traffic analysis, and design of experiments in biology and drug design.
在过去的十年里,理论计算机科学,应用数学和电气工程社区已经广泛研究了“解决”欠定线性系统问题的变体。 一个共同的数学特征,使我们能够解决这些问题是稀疏性;粗略地说,只要未知向量不包含太多的非零分量(或有几个主导分量),我们可以“解决”未知向量的欠定系统。 这些问题被称为稀疏近似问题,并在不同的领域,如信号和图像处理,生物学,成像,断层扫描,机器学习和other.The拟议的研究项目的应用程序旨在开发一个全面的,严格的稀疏近似理论,广义。 该研究计划涉及两个互补的研究方向:(1)稀疏近似的组合,算法和复杂性理论基础的强大和更完整的视图(包括其推广到函数稀疏近似,其中我们想要“求解”未知向量的某个函数,而不是向量本身),(2)结合其在理论计算机科学的其他领域的相互作用或直接应用,从复杂性理论到编码理论,以及电气工程,从信号处理到模拟到稀疏近似的一般理论集中在竞争参数之间的最佳折衷和实现这种折衷的计算可行性上,不仅有助于探索稀疏近似的理论极限和可能性,而且还将算法技术和理论基准反馈到其应用领域。 稀疏近似已经被证明在各种领域都有影响,包括成像和信号处理,互联网流量分析,以及生物学和药物设计中的实验设计。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Atri Rudra其他文献

Pricing commodities
  • DOI:
    10.1016/j.tcs.2009.10.002
  • 发表时间:
    2011-02-25
  • 期刊:
  • 影响因子:
  • 作者:
    Robert Krauthgamer;Aranyak Mehta;Atri Rudra
  • 通讯作者:
    Atri Rudra
Improved Approximation Algorithms for the Spanning Star Forest Problem
  • DOI:
    10.1007/s00453-011-9607-1
  • 发表时间:
    2011-12-21
  • 期刊:
  • 影响因子:
    0.700
  • 作者:
    Ning Chen;Roee Engelberg;C. Thach Nguyen;Prasad Raghavendra;Atri Rudra;Gyanit Singh
  • 通讯作者:
    Gyanit Singh
Foreword: a Commemorative Issue for Alan L. Selman
  • DOI:
    10.1007/s00224-023-10123-1
  • 发表时间:
    2023-06-19
  • 期刊:
  • 影响因子:
    0.400
  • 作者:
    Elvira Mayordomo;Mitsunori Ogihara;Atri Rudra
  • 通讯作者:
    Atri Rudra

Atri Rudra的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Atri Rudra', 18)}}的其他基金

Collaborative Research: Hardware-Aware Matrix Computations for Deep Learning Applications
协作研究:深度学习应用的硬件感知矩阵计算
  • 批准号:
    2247014
  • 财政年份:
    2023
  • 资助金额:
    $ 30.55万
  • 项目类别:
    Standard Grant
AF: Medium: Collaborative Research: Beyond Sparsity: Refined Measures of Complexity for Linear Algebra
AF:媒介:协作研究:超越稀疏性:线性代数复杂性的精确度量
  • 批准号:
    1763481
  • 财政年份:
    2018
  • 资助金额:
    $ 30.55万
  • 项目类别:
    Continuing Grant
AF:Small:Tight Topology Dependent bounds on Distributed Communication
AF:小:分布式通信的紧密拓扑依赖界限
  • 批准号:
    1717134
  • 财政年份:
    2017
  • 资助金额:
    $ 30.55万
  • 项目类别:
    Standard Grant
AF:III:Small:Collaborative Research: New Frontiers in Join Algorithms: Optimality, Noise, and Richer Languages
AF:III:Small:协作研究:连接算法的新领域:最优性、噪声和更丰富的语言
  • 批准号:
    1319402
  • 财政年份:
    2013
  • 资助金额:
    $ 30.55万
  • 项目类别:
    Standard Grant
Eastern Great Lakes Theory of Computation Workshop
东部五大湖计算理论研讨会
  • 批准号:
    0942511
  • 财政年份:
    2009
  • 资助金额:
    $ 30.55万
  • 项目类别:
    Standard Grant
CAREER: (TF/TOC) Efficient Computation of Approximate Solutions
职业:(TF/TOC)近似解的高效计算
  • 批准号:
    0844796
  • 财政年份:
    2009
  • 资助金额:
    $ 30.55万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402836
  • 财政年份:
    2024
  • 资助金额:
    $ 30.55万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402851
  • 财政年份:
    2024
  • 资助金额:
    $ 30.55万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
  • 批准号:
    2422926
  • 财政年份:
    2024
  • 资助金额:
    $ 30.55万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402283
  • 财政年份:
    2024
  • 资助金额:
    $ 30.55万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
  • 批准号:
    2402852
  • 财政年份:
    2024
  • 资助金额:
    $ 30.55万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
  • 批准号:
    2402284
  • 财政年份:
    2024
  • 资助金额:
    $ 30.55万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402837
  • 财政年份:
    2024
  • 资助金额:
    $ 30.55万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
  • 批准号:
    2402835
  • 财政年份:
    2024
  • 资助金额:
    $ 30.55万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Adventures in Flatland: Algorithms for Modern Memories
合作研究:AF:媒介:平地历险记:现代记忆算法
  • 批准号:
    2423105
  • 财政年份:
    2024
  • 资助金额:
    $ 30.55万
  • 项目类别:
    Continuing Grant
Collaborative Research: AF: Medium: Sketching for privacy and privacy for sketching
合作研究:AF:中:为隐私而素描和为素描而隐私
  • 批准号:
    2311649
  • 财政年份:
    2023
  • 资助金额:
    $ 30.55万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了