Excellence in Research - Collaborative: Hierarchical Multilayered Block Copolymer Dielectrics with Z-Gradient Nanofiller for Capacitive Energy Storage and Gate Dielectric
卓越研究 - 协作:具有 Z 梯度纳米填料的分层多层嵌段共聚物电介质,用于电容性能量存储和栅极电介质
基本信息
- 批准号:1900692
- 负责人:
- 金额:$ 34.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project is jointly funded by the Historically Black Colleges and Universities Undergraduate Program - Excellence in Research program (HBCU-UP EiR) and the Established Program to Stimulate Competitive Research (EPSCoR). NON-TECHNICAL SUMMARY:There is much interest in use of lightweight polymer films for potential applications in flexible electronics related to portable energy storage devices, including batteries, capacitors, integrated solar cells and soft-actuation. In this regard, new approaches to high-energy density capacitive energy storage have recently demonstrated notable potential for high electrical energy storage using multilayered polymer films. Essentially the multiple interfaces within the multilayer act to sequentially block electrical breakdown of the dielectric polymer film that determines the upper limit of energy storage of the flexible capacitor. Recognizing that the breakdown follows an increasingly branched asymmetric pathway between electrodes (much like lightning bolts striking the earth), with the highest potential at the positive electrode, the work will systematically design and explore whether hybrid polymer multilayers (tetra-layered) can be structurally "reversed-engineered" with an asymmetry in polymer-layer breakdown properties that counters the asymmetric breakdown pathway. The approach aims to use self-assembling block copolymers for multilayer formation and combines it with the use of dispersed inorganic nanofillers to boost the energy storage capacity. Successful outcome can have a significant impact on the flexible electronics industry. This multidisciplinary team effort involves Howard University and Jackson State University (Historically Black College Universities) and University of Houston, a Minority Serving Institution, with significant amounts of intra and inter-institutional educational, training and research activities. The project will arrange a yearly rotational day-long conference on nanocomposites at each of the campuses to educate scientists, local teachers and local college bound students about the vast possibilities of nanotechnology. A trained cadre of talented nanotechnologists will be trained to address the challenges of the nation's workforce needs and produce peer reviewed scientific and technological publications that can be disseminated to the scientific community and broader society. The program aims to make web-accessible training protocols to prospective researchers in the field of nanoscience and nanoengineering.TECHNICAL SUMMARY;Fundamentally high energy densities and ultrafast charge-discharge rates (pulsed power) in solid state-flexible capacitors are of fundamental importance. The energy storage density is limited by the maximum electric field that can be applied across the electrodes. Current technologies for pulsed power applications utilize polymers as the dielectric of choice due to their high electrical resistance, low dielectric loss, self healing capability, formability and flexibility. However, these materials do not meet all of the requirements of the next-generation film dielectrics for high voltage and high energy density electronic devices. The planned work is based on the hypothesis that an anti-symmetric z-structured tetra-layered design of molecularly assembled capacitive elemental layers can precisely counter the asymmetry of the electrical treeing breakdown cascade from the positive to the negative electrode. The anti-symmetric film structure considers a tetra-layer with an extremely high breakdown prevention self-assembling multilayered block copolymer at the positive electrode where E-field strength is highest as per electrical treeing breakdown view-point. The subsequent layer is also a block copolymer structure with in-plane aligned nanosheets to forestall E-field cascade breakdown. The third layer is designed to contain high dielectric nanoparticles sequestered within a macroscopically ordered block copolymer layer, which also provides a strategy of gate dielectric for 2D semiconductor devices such as field-effect transistors and logic design with enhanced functionalities compared to the conventional dielectrics. Finally, a defect-free bottom polymer layer is used, which will prevent trickle-current to the negative electrode. A multidisciplinary team between Howard University and Jackson State University (Historically Black College Universities), and University of Houston, a Minority Serving Institution, will work towards training a cadre of talented nanotechnologists to face the challenges of the nation's workforce needs. Web modules on nanoscience and nanoengineering research for young and interested researchers and the general public will be made available.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目由历史上的黑人学院和大学本科生计划-卓越研究计划(HBCU-UP EiR)和刺激竞争研究的既定计划(EPSCoR)共同资助。非技术概述:人们对使用轻质聚合物膜用于与便携式能量存储装置相关的柔性电子产品中的潜在应用非常感兴趣,包括电池、电容器、集成太阳能电池和软驱动。在这方面,高能量密度电容性能量存储的新方法最近已经证明了使用多层聚合物膜的高电能存储的显著潜力。基本上,多层内的多个界面用于顺序地阻止介电聚合物膜的电击穿,所述介电聚合物膜确定柔性电容器的能量存储的上限。认识到击穿遵循电极之间的分支越来越多的不对称路径(很像闪电击中地球),在正极处具有最高电位,这项工作将系统地设计和探索混合聚合物多层(四层)是否可以在结构上“逆向工程”与聚合物层击穿特性的不对称性对抗不对称击穿路径。该方法旨在使用自组装嵌段共聚物形成多层结构,并将其与分散的无机纳米填料结合使用,以提高储能能力。成功的结果可以对柔性电子行业产生重大影响。这一多学科团队的努力涉及霍华德大学和杰克逊州立大学(历史上的黑人大学)和休斯顿大学,一个少数民族服务机构,与大量的内部和机构间的教育,培训和研究活动。该项目将每年在每个校区安排一次为期一天的纳米复合材料会议,以教育科学家、当地教师和当地大学学生了解纳米技术的巨大可能性。将培训一批训练有素的纳米技术人才,以应对国家劳动力需求的挑战,并制作同行评审的科学和技术出版物,这些出版物可以传播给科学界和更广泛的社会。该计划的目的是使网络访问的培训协议,在纳米科学和纳米工程领域的未来研究人员。技术概要;从根本上讲,高能量密度和超快的充电放电速率(脉冲功率)在固态柔性电容器是至关重要的。能量存储密度受到可以跨电极施加的最大电场的限制。用于脉冲功率应用的当前技术利用聚合物作为电介质的选择,这是由于它们的高电阻、低介电损耗、自修复能力、可成形性和柔性。然而,这些材料不能满足下一代薄膜电容器对高电压和高能量密度电子器件的所有要求。计划的工作是基于这样的假设,即分子组装的电容性元素层的反对称z结构的四层设计可以精确地对抗从正极到负极的电树枝击穿级联的不对称性。反对称膜结构考虑了在正电极处具有极高击穿防止自组装多层嵌段共聚物的四层,其中根据电树枝击穿观点,电场强度最高。随后的层也是嵌段共聚物结构,其具有面内对齐的纳米片以防止电场级联击穿。第三层被设计为包含隔离在宏观有序的嵌段共聚物层内的高介电纳米颗粒,这也提供了用于2D半导体器件(例如场效应晶体管)的栅极电介质的策略,并且与传统的MEMS相比具有增强的功能性的逻辑设计。最后,使用无缺陷的底部聚合物层,这将防止流向负电极的涓流。一个多学科小组之间的霍华德大学和杰克逊州立大学(历史上的黑人大学),和休斯敦大学,少数民族服务机构,将致力于培养一个有才华的纳米技术骨干,面对国家的劳动力需求的挑战。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enhancing the Dielectric Breakdown Strength of Solid-State Polymer Capacitors by Chain End Manipulations
通过链端处理增强固态聚合物电容器的介电击穿强度
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Singh, Maninderjeet;Wu, Wenjie;Dong, Mei;Tran, David;Wooley, Karen L.;Pradhan, Nihar;Raghavan, Dharmaraj;Karim, Alamgir
- 通讯作者:Karim, Alamgir
Electric Field-Induced Metal-to-Insulator Phase Transition in Few-Layered MoSe2
电场诱导的少层 MoSe2 金属到绝缘体的相变
- DOI:
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Pradhan, Nihar;Garcia, Carlos;Chakrabarti, Bhaswar;Nash, Jawnaye;Miller, Christina S.;Raghavan, Dharmaraj;Karim, Alamgir;Stan, Liliana;Divan, Ralu;Rosenmann, Daniel
- 通讯作者:Rosenmann, Daniel
Development of photovoltaic solar cells based on heterostructure of layered materials: challenges and opportunities
- DOI:10.1007/s42247-021-00205-6
- 发表时间:2021-05
- 期刊:
- 影响因子:3.8
- 作者:Priyanka Das;S. Behura;S. McGill;D. Raghavan;A. Karim;N. Pradhan
- 通讯作者:Priyanka Das;S. Behura;S. McGill;D. Raghavan;A. Karim;N. Pradhan
Intrinsic Photoconductivity of few-layered ZrS2 Phototransistors via Multiterminal Measurements
- DOI:10.30564/ssid.v1i2.1526
- 发表时间:2020-03
- 期刊:
- 影响因子:0
- 作者:Rukshan M. Tanthirige;C. García;Saikat Ghosh;F. Jackson;J. Nash;D. Rosenmann;R. Divan;L. Stan;A. Sumant;S. McGill;P. Ray;N. Pradhan
- 通讯作者:Rukshan M. Tanthirige;C. García;Saikat Ghosh;F. Jackson;J. Nash;D. Rosenmann;R. Divan;L. Stan;A. Sumant;S. McGill;P. Ray;N. Pradhan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nihar Pradhan其他文献
Energy storage in nanocomposite films of polystyrene (PS) grafted TiOsub2/sub nanoparticles in PS matrix
聚苯乙烯(PS)接枝二氧化钛纳米粒子在 PS 基体中形成的纳米复合薄膜的能量存储
- DOI:
10.1016/j.polymer.2025.128751 - 发表时间:
2025-09-23 - 期刊:
- 影响因子:4.500
- 作者:
Olusegun Alaba;Sumit Bera;Ikeoluwa Apata;Maninderjeet Singh;Isaac Oppong Yeboah;Francisco C. Robles Hernandez;Alamgir Karim;Nihar Pradhan;Dharmaraj Raghavan - 通讯作者:
Dharmaraj Raghavan
Nihar Pradhan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Broadening Instructional Innovation in the Chemistry Laboratory through Excellence in Curriculum Development
合作研究:通过卓越的课程开发扩大化学实验室的教学创新
- 批准号:
2337028 - 财政年份:2024
- 资助金额:
$ 34.84万 - 项目类别:
Continuing Grant
Collaborative Research: Broadening Instructional Innovation in the Chemistry Laboratory through Excellence in Curriculum Development
合作研究:通过卓越的课程开发扩大化学实验室的教学创新
- 批准号:
2337027 - 财政年份:2024
- 资助金额:
$ 34.84万 - 项目类别:
Continuing Grant
Interdisciplinary Clinical Advances and Research Excellence in TMDs (ICARE 4 TMDs) Collaborative
TMD 跨学科临床进展和卓越研究 (ICARE 4 TMD) 协作
- 批准号:
10829180 - 财政年份:2023
- 资助金额:
$ 34.84万 - 项目类别:
Excellence in Research/Collaborative Research: Modeling Transportation Choices Under the Presence of Real-time Information Using Simulated-based Virtual Experiments
卓越的研究/合作研究:使用基于模拟的虚拟实验在实时信息存在下对交通选择进行建模
- 批准号:
2200633 - 财政年份:2022
- 资助金额:
$ 34.84万 - 项目类别:
Standard Grant
Collaborative Research: NSF INCLUDES Alliance: Alliance Supporting Pacific Impact through Computational Excellence (ALL-SPICE)
合作研究:NSF 包括联盟:通过卓越计算支持太平洋影响力联盟 (ALL-SPICE)
- 批准号:
2217227 - 财政年份:2022
- 资助金额:
$ 34.84万 - 项目类别:
Cooperative Agreement
Collaborative Research: NSF INCLUDES Alliance: Alliance Supporting Pacific Impact through Computational Excellence (ALL-SPICE)
合作研究:NSF 包括联盟:通过卓越计算支持太平洋影响力联盟 (ALL-SPICE)
- 批准号:
2217242 - 财政年份:2022
- 资助金额:
$ 34.84万 - 项目类别:
Cooperative Agreement
Excellence in Research/Collaborative Research: Modeling Transportation Choices Under the Presence of Real-time Information Using Simulated-based Virtual Experiments
卓越的研究/合作研究:使用基于模拟的虚拟实验在实时信息存在下对交通选择进行建模
- 批准号:
2200590 - 财政年份:2022
- 资助金额:
$ 34.84万 - 项目类别:
Standard Grant
Excellence in Research: Collaborative Research: Detecting Vulnerabilities in Internet of Things with Deep Learning
卓越研究:协作研究:利用深度学习检测物联网漏洞
- 批准号:
2101118 - 财政年份:2021
- 资助金额:
$ 34.84万 - 项目类别:
Standard Grant
Excellence in Research: Collaborative Research: Computational Modeling and Experimental Investigation on Multivalent Interaction at Nano-Bio Interface for 2D Materials
卓越研究:协作研究:二维材料纳米生物界面多价相互作用的计算建模和实验研究
- 批准号:
2100946 - 财政年份:2021
- 资助金额:
$ 34.84万 - 项目类别:
Standard Grant
Excellence in Research - Collaborative Proposal: Investigation of Quantum Effects and Nanostructures Through Research & Educational Partnership Between NCCU & Howard University
卓越研究 - 合作提案:通过研究调查量子效应和纳米结构
- 批准号:
2101121 - 财政年份:2021
- 资助金额:
$ 34.84万 - 项目类别:
Standard Grant