Excellence in Research: Collaborative Research: Detecting Vulnerabilities in Internet of Things with Deep Learning
卓越研究:协作研究:利用深度学习检测物联网漏洞
基本信息
- 批准号:2101118
- 负责人:
- 金额:$ 72.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Internet of Things (IoT) integrates software applications, physical devices, and algorithms to interact with the physical world and humans. The economic and societal potential of such systems is vastly greater than has been realized, and major investments are being made worldwide to develop the technology. The technology for building IoT is based on embedded systems, scientific computations, and software embedded in devices. Because the physical components of IoT are directly interactive with humans, the security and reliability requirements are qualitatively different from those in general purpose computing. Failure to meet the security and reliability requirements exposes IoT and humans to malignant attacks. The goal of this project is to conduct interdisciplinary research that utilizes artificial intelligence methodologies against cybercriminals who initiate attacks or target internet connected devices and users. This project aims to explore applications of Deep Learning in cybersecurity research to detect security vulnerabilities in the Internet of Things through automated digital forensic evidence analytics. The project will actively engage a team of researchers in the investigation of deep learning, which includes a broader family of Artificial Intelligence that has produced results comparable and in some cases superior to human experts, to conduct the following research activities: (1) Assessing potential data vulnerabilities related to personal data privacy violations by analyzing the extracted hidden contents evidence and encrypted messages from IoT devices in a forensically sound manner; (2) Evaluating IoT software forensic evidence. Analyzing software vulnerabilities in IoT application source code to better mitigate the risk to software systems. Typical source code vulnerability evidence in applications includes buffer overflow, integer overflow, and Carriage Return and Line Feed injection; (3) Reconstructing attack scenes based on forensic evidence to find existing system vulnerabilities of IoT; (4) Increase research capacity and collaborations to generate new research opportunities for undergraduates from underrepresented communities to pursue advanced degrees in computer science.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
物联网(Internet of Things, IoT)将软件应用、物理设备和算法集成在一起,与物理世界和人类进行交互。这种系统的经济和社会潜力远远大于已经实现的,世界各地正在进行重大投资以开发这项技术。构建物联网的技术基于嵌入式系统、科学计算和嵌入设备的软件。由于物联网的物理组件直接与人类交互,因此其安全性和可靠性要求与通用计算中的安全性和可靠性要求有质的不同。不满足安全性和可靠性要求会使物联网和人类面临恶性攻击。该项目的目标是开展跨学科研究,利用人工智能方法对抗发起攻击或针对互联网连接设备和用户的网络犯罪分子。该项目旨在探索深度学习在网络安全研究中的应用,通过自动化数字取证证据分析来检测物联网中的安全漏洞。该项目将积极邀请一组研究人员参与深度学习的调查,其中包括更广泛的人工智能家族,这些人工智能已经产生了与人类专家相当的结果,在某些情况下甚至优于人类专家,以开展以下研究活动:(1)通过以法医合理的方式分析从物联网设备中提取的隐藏内容证据和加密消息,评估与个人数据隐私侵犯相关的潜在数据漏洞;(2)评估物联网软件取证证据。分析物联网应用源代码中的软件漏洞,以更好地降低软件系统的风险。应用程序中典型的源代码漏洞证据包括缓冲区溢出、整数溢出、回车和换行注入;(3)基于取证证据重构攻击场景,发现物联网存在的系统漏洞;(4)增加研究能力和合作,为来自代表性不足的社区的本科生提供新的研究机会,以攻读计算机科学的高级学位。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jie Yan其他文献
A design method for direct vision coaxial linear dispersion spectrometers
一种直视同轴线性色散光谱仪的设计方法
- DOI:
10.1364/oe.465523 - 发表时间:
2022 - 期刊:
- 影响因子:3.8
- 作者:
Xuan Zhang;Jian Wang;Jun Zhang;Jie Yan;Yan Han - 通讯作者:
Yan Han
Construction of a prokaryotic expression system of vacA gene and detection of vacA gene, VacA protein in Helicobacter pylori isolates and ant-VacA antibody in patients' sera.
vacA基因原核表达系统的构建及vacA基因、幽门螺杆菌中VacA蛋白及患者血清中抗VacA抗体的检测。
- DOI:
10.3748/wjg.v10.i7.985 - 发表时间:
2004 - 期刊:
- 影响因子:4.3
- 作者:
Jie Yan;Ya - 通讯作者:
Ya
Research on the image matching and tracking algorithm for the end of infrared target tracking
红外目标跟踪末端图像匹配与跟踪算法研究
- DOI:
10.1109/icalip.2008.4590014 - 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Kai Zhang;Dudu Zhong;Jie Yan;Jianhua Wang - 通讯作者:
Jianhua Wang
Low-Frequency Noise Suppression of Desert Seismic Data Based on Variational Mode Decomposition and Low-Rank Component Extraction
基于变分模态分解和低阶分量提取的沙漠地震数据低频噪声抑制
- DOI:
10.1109/lgrs.2019.2919795 - 发表时间:
2020-02 - 期刊:
- 影响因子:4.8
- 作者:
Haitao Ma;Jie Yan;Yue Li - 通讯作者:
Yue Li
Implementing Optogenetic Modulation in Mechanotransduction
在力转导中实施光遗传学调制
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Miao Yu;Shimin Le;S. Barnett;Zhenhuan Guo;Xueying Zhong;P. Kanchanawong;Jie Yan - 通讯作者:
Jie Yan
Jie Yan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jie Yan', 18)}}的其他基金
EAGER: SaTC-EDU: Exploring Visualized and Explainable Artificial Intelligence to Improve Students’ Learning Experience in Digital Forensics Education
EAGER:SaTC-EDU:探索可视化和可解释的人工智能,以改善学生在数字取证教育中的学习体验
- 批准号:
2039287 - 财政年份:2021
- 资助金额:
$ 72.88万 - 项目类别:
Standard Grant
Targeted Infusion Project: Developing a Cloud-based Cryptographic Simulator for Enhancing Undergraduates' Learning Experience in Cybersecurity Education
有针对性的注入项目:开发基于云的密码模拟器,以增强本科生在网络安全教育中的学习体验
- 批准号:
1714261 - 财政年份:2017
- 资助金额:
$ 72.88万 - 项目类别:
Standard Grant
LUCID: A Spectator Targeted Visualization System to Broaden Participation at Cyber Defense Competitions
LUCID:观众定向可视化系统,可扩大网络防御竞赛的参与范围
- 批准号:
1303424 - 财政年份:2013
- 资助金额:
$ 72.88万 - 项目类别:
Continuing Grant
SGER: Research to Improve Communication by Pedagogical Agents
SGER:改善教学人员沟通的研究
- 批准号:
0827188 - 财政年份:2008
- 资助金额:
$ 72.88万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Broadening Instructional Innovation in the Chemistry Laboratory through Excellence in Curriculum Development
合作研究:通过卓越的课程开发扩大化学实验室的教学创新
- 批准号:
2337028 - 财政年份:2024
- 资助金额:
$ 72.88万 - 项目类别:
Continuing Grant
Collaborative Research: Broadening Instructional Innovation in the Chemistry Laboratory through Excellence in Curriculum Development
合作研究:通过卓越的课程开发扩大化学实验室的教学创新
- 批准号:
2337027 - 财政年份:2024
- 资助金额:
$ 72.88万 - 项目类别:
Continuing Grant
Interdisciplinary Clinical Advances and Research Excellence in TMDs (ICARE 4 TMDs) Collaborative
TMD 跨学科临床进展和卓越研究 (ICARE 4 TMD) 协作
- 批准号:
10829180 - 财政年份:2023
- 资助金额:
$ 72.88万 - 项目类别:
Excellence in Research/Collaborative Research: Modeling Transportation Choices Under the Presence of Real-time Information Using Simulated-based Virtual Experiments
卓越的研究/合作研究:使用基于模拟的虚拟实验在实时信息存在下对交通选择进行建模
- 批准号:
2200633 - 财政年份:2022
- 资助金额:
$ 72.88万 - 项目类别:
Standard Grant
Collaborative Research: NSF INCLUDES Alliance: Alliance Supporting Pacific Impact through Computational Excellence (ALL-SPICE)
合作研究:NSF 包括联盟:通过卓越计算支持太平洋影响力联盟 (ALL-SPICE)
- 批准号:
2217227 - 财政年份:2022
- 资助金额:
$ 72.88万 - 项目类别:
Cooperative Agreement
Collaborative Research: NSF INCLUDES Alliance: Alliance Supporting Pacific Impact through Computational Excellence (ALL-SPICE)
合作研究:NSF 包括联盟:通过卓越计算支持太平洋影响力联盟 (ALL-SPICE)
- 批准号:
2217242 - 财政年份:2022
- 资助金额:
$ 72.88万 - 项目类别:
Cooperative Agreement
Excellence in Research/Collaborative Research: Modeling Transportation Choices Under the Presence of Real-time Information Using Simulated-based Virtual Experiments
卓越的研究/合作研究:使用基于模拟的虚拟实验在实时信息存在下对交通选择进行建模
- 批准号:
2200590 - 财政年份:2022
- 资助金额:
$ 72.88万 - 项目类别:
Standard Grant
Excellence in Research: Collaborative Research: Computational Modeling and Experimental Investigation on Multivalent Interaction at Nano-Bio Interface for 2D Materials
卓越研究:协作研究:二维材料纳米生物界面多价相互作用的计算建模和实验研究
- 批准号:
2100946 - 财政年份:2021
- 资助金额:
$ 72.88万 - 项目类别:
Standard Grant
Excellence in Research - Collaborative Proposal: Investigation of Quantum Effects and Nanostructures Through Research & Educational Partnership Between NCCU & Howard University
卓越研究 - 合作提案:通过研究调查量子效应和纳米结构
- 批准号:
2101121 - 财政年份:2021
- 资助金额:
$ 72.88万 - 项目类别:
Standard Grant
Collaborative Excellence in Research: Skill Acquisition, Technical Change and Differential Employment and Income Trajectories
卓越的研究协作:技能获取、技术变革以及差异化就业和收入轨迹
- 批准号:
2101244 - 财政年份:2021
- 资助金额:
$ 72.88万 - 项目类别:
Standard Grant