CHS: Medium: Collaborative Research: Physics and Learning Integration Using Differentiable Rendering
CHS:媒介:协作研究:使用可微渲染的物理和学习集成
基本信息
- 批准号:1900927
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Using image measurements to understand and acquire properties of the physical world (such as the shape of an object, the reflectance of a surface, or the lighting in a room) is a critical capability for many sciences including medicine, material fabrication, remote sensing, robotics, autonomous navigation, architectural design, computer graphics, and computer vision. At a high level, these properties can be found by taking images and using computational algorithms to infer unknown parameters from the measurements. Broadly, the inference algorithms can be classified into two categories. On the one hand, physics-based algorithms try to analytically model and then invert the physics underlying the process of how a scene of certain parameters produces measured images; these algorithms are generally accurate but require a lot of computation. On the other hand, data-driven algorithms use supervised datasets to learn how to directly map measurements to unknowns; these algorithms are computationally efficient but are not guaranteed to produce accurate predictions. This project aims to transform physical acquisition pipelines, by creating general-purpose computational tools that combine the advantages of physics-based and machine-learning-based techniques, and that are simultaneously efficient, accurate and robust. By developing the theory and computational tools for this integration of simulation and learning, the project has the potential for transformative impact in application areas like industrial quality control, material science, oceanography, and biomedical imaging. Widespread adoption of project outcomes will be encouraged by making new software publicly available, as well as by offering tutorials and workshops in computer graphics, vision, and imaging conferences. The project also includes an education and outreach program that is tightly coupled to the research objectives, and which takes the form of courses, summer workshops, and lab visits for K-12 students intended to introduce them to science at an early stage and encourage STEM education. Additionally, the project will contribute towards broadening participation in computing through targeted involvement in existing programs in the participating institutions that focus on outreach to female students, first-generation students, and students from traditionally underrepresented minorities.This project aims to transform physical acquisition pipelines by creating general-purpose computational tools that enable efficient and robust inference. This will be achieved by coupling physics-based and learning-based approaches, in a way that combines their complementary strengths of accuracy, generality, and efficiency. Three core areas of research will contribute to this. First, the project will develop inference pipelines that synergistically combine neural networks with analysis by synthesis optimization, in order to efficiently produce high-fidelity estimates of physical parameters. Neural networks will be trained in a physics-aware manner, by using physically-accurate renderers as layers in their architecture; this will allow the neural networks to simultaneously leverage supervised information and physical knowledge when making predictions. Second, a new class of physically accurate differentiable renderers will be created, which will enable this tight integration of physics and learning without the need to sacrifice computational efficiency. Instead of images, differentiable renderers will estimate their derivatives with respect to scene parameters; this estimation will be performed in a physically accurate way, using physical simulation algorithms derived from first principles and benefiting from innovations targeting improved efficiency. Finally, the advantages of the developed inference tools will be demonstrated in a diverse range of applications such as autonomous sensing, material science and fabrication, and biomedical imaging.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
使用图像测量来理解和获取物理世界的属性(例如物体的形状、表面的反射率或房间中的照明)对于许多科学来说都是一项关键能力,包括医学、材料制造、遥感、机器人、自主导航、建筑设计、计算机图形学和计算机视觉。在高水平上,这些属性可以通过拍摄图像并使用计算算法从测量结果中推断未知参数来找到。广义上,推理算法可以分为两类。一方面,基于物理的算法试图分析建模,然后反转某些参数的场景如何产生测量图像的过程的物理基础;这些算法通常是准确的,但需要大量的计算。另一方面,数据驱动的算法使用监督数据集来学习如何直接将测量值映射到未知值;这些算法在计算上是高效的,但不能保证产生准确的预测。 该项目旨在通过创建通用计算工具来改造物理采集管道,这些工具联合收割机了基于物理和基于机器学习的技术的优势,同时具有高效,准确和鲁棒性。通过开发模拟和学习集成的理论和计算工具,该项目有可能在工业质量控制,材料科学,海洋学和生物医学成像等应用领域产生变革性影响。项目成果的广泛采用将通过公开提供新软件以及提供计算机图形学,视觉和成像会议的教程和研讨会来鼓励。 该项目还包括一个与研究目标紧密结合的教育和推广计划,该计划采取课程,夏季研讨会和K-12学生实验室访问的形式,旨在在早期阶段向他们介绍科学并鼓励STEM教育。此外,该项目将通过有针对性地参与机构的现有计划,扩大对计算的参与,这些计划侧重于向女学生,第一代学生和传统上代表性不足的少数民族学生提供服务。该项目旨在通过创建通用计算工具来改变物理获取管道,从而实现高效和强大的推理。这将通过结合基于物理和基于学习的方法来实现,结合它们在准确性,通用性和效率方面的互补优势。三个核心研究领域将对此做出贡献。 首先,该项目将开发推理管道,协同联合收割机神经网络与综合优化分析相结合,以有效地产生物理参数的高保真估计。神经网络将以物理感知的方式进行训练,通过使用物理精确的渲染器作为其架构中的层;这将允许神经网络在进行预测时同时利用监督信息和物理知识。 其次,将创建一类新的物理精确可微渲染器,这将使物理和学习紧密结合,而无需牺牲计算效率。可微分渲染器将估计它们相对于场景参数的导数,而不是图像;这种估计将以物理精确的方式进行,使用从第一原理导出的物理模拟算法,并受益于针对提高效率的创新。 最后,开发的推理工具的优势将在自主传感、材料科学和制造以及生物医学成像等各种应用中得到证明。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Path-space differentiable rendering of participating media
参与媒体的路径空间可微渲染
- DOI:10.1145/3450626.3459782
- 发表时间:2021
- 期刊:
- 影响因子:6.2
- 作者:Zhang, Cheng;Yu, Zihan;Zhao, Shuang
- 通讯作者:Zhao, Shuang
A differential theory of radiative transfer
- DOI:10.1145/3355089.3356522
- 发表时间:2019-11
- 期刊:
- 影响因子:0
- 作者:Cheng Zhang;Lifan Wu;Changxi Zheng;Ioannis Gkioulekas;R. Ramamoorthi;Shuang Zhao
- 通讯作者:Cheng Zhang;Lifan Wu;Changxi Zheng;Ioannis Gkioulekas;R. Ramamoorthi;Shuang Zhao
Efficient Path‐Space Differentiable Volume Rendering With Respect To Shapes
高效路径——关于形状的空间可微体积渲染
- DOI:10.1111/cgf.14884
- 发表时间:2023
- 期刊:
- 影响因子:2.5
- 作者:Yu, Z.;Zhang, C.;Maury, O.;Hery, C.;Dong, Z.;Zhao, S.
- 通讯作者:Zhao, S.
Efficient estimation of boundary integrals for path-space differentiable rendering
路径空间可微渲染边界积分的有效估计
- DOI:10.1145/3528223.3530080
- 发表时间:2022
- 期刊:
- 影响因子:6.2
- 作者:Yan, Kai;Lassner, Christoph;Budge, Brian;Dong, Zhao;Zhao, Shuang
- 通讯作者:Zhao, Shuang
Efficient Differentiation of Pixel Reconstruction Filters for Path-Space Differentiable Rendering
用于路径空间可微渲染的像素重建滤波器的高效微分
- DOI:10.1145/3550454.3555500
- 发表时间:2022
- 期刊:
- 影响因子:6.2
- 作者:Yu, Zihan;Zhang, Cheng;Nowrouzezahrai, Derek;Dong, Zhao;Zhao, Shuang
- 通讯作者:Zhao, Shuang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Shuang Zhao其他文献
Holocene aeolian dust accumulation rates across the Chinese Loess Plateau
中国黄土高原全新世风沙堆积率
- DOI:
10.1016/j.gloplacha.2021.103720 - 发表时间:
2021-12 - 期刊:
- 影响因子:3.9
- 作者:
Shuang Zhao;Dunsheng Xia;Kexin Lü - 通讯作者:
Kexin Lü
Coagulation performance and membrane fouling of polyferric chloride/epichlorohydrin–dimethylamine in coagulation/ultrafiltration combined process
混凝/超滤联合工艺中聚合氯化铁/环氧氯丙烷·二甲胺的混凝性能及膜污染
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:15.1
- 作者:
Lijuan Feng;Wenyu Wang;Ruiqi Feng;Shuang Zhao;Hongyu Dong;Shenglei Sun;Baoyu Gao;Qinyan Yue - 通讯作者:
Qinyan Yue
Influence of geomorphology and leaching on the formation of Permian bauxite in northern Guizhou Province, South China
地貌及淋滤对黔北二叠系铝土矿形成的影响
- DOI:
10.1016/j.gexplo.2019.106446 - 发表时间:
2020-03 - 期刊:
- 影响因子:3.9
- 作者:
Peigang Li;Wenchao Yu;Yuansheng Du;Xulong Lai;Shenfu Weng;Dawei Pang;Guolin Xiong;Zhiyuan Lei;Shuang Zhao;Shiqiang Yang - 通讯作者:
Shiqiang Yang
Multilayered construction of glucose oxidase and gold nanoparticles on Au electrodes based on layer-by-layer covalent attachment
基于逐层共价连接的葡萄糖氧化酶和金纳米粒子在金电极上的多层结构
- DOI:
10.1016/j.elecom.2005.11.014 - 发表时间:
2006-04 - 期刊:
- 影响因子:5.4
- 作者:
Weiwei Yang;Jinxing Wang;Shuang Zhao;Yingying Sun;Changqing Sun* - 通讯作者:
Changqing Sun*
Preparation of Si3N4 ceramic foams by simultaneously using egg white protein and fish collagen
蛋清蛋白和鱼胶原蛋白同时制备氮化硅陶瓷泡沫
- DOI:
10.1016/j.ceramint.2012.06.046 - 发表时间:
2013 - 期刊:
- 影响因子:5.2
- 作者:
Liu-yan Yin;Xin-gui Zhou;Jin-shan Yu;Hong-lei Wang;Shuang Zhao;Zheng Luo;Bei Yang - 通讯作者:
Bei Yang
Shuang Zhao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Shuang Zhao', 18)}}的其他基金
CAREER: Physics-Based Differentiable and Inverse Rendering
职业:基于物理的可微分和逆向渲染
- 批准号:
2239627 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CHS: Small: Predictive Material Appearance Modeling at Multiple Scales
CHS:小型:多尺度预测材料外观建模
- 批准号:
1813553 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似海外基金
CHS: Medium: Collaborative Research: Augmenting Human Cognition with Collaborative Robots
CHS:媒介:协作研究:用协作机器人增强人类认知
- 批准号:
2343187 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CHS: Medium: Collaborative Research: Empirically Validated Perceptual Tasks for Data Visualization
CHS:媒介:协作研究:数据可视化的经验验证感知任务
- 批准号:
2236644 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Research: Regional Experiments for the Future of Work in America
CHS:媒介:合作研究:美国未来工作的区域实验
- 批准号:
2243330 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CHS: Medium: Collaborative Research: From Hobby to Socioeconomic Driver: Innovation Pathways to Professional Making in Asia and the American Midwest
CHS:媒介:协作研究:从爱好到社会经济驱动力:亚洲和美国中西部专业制造的创新之路
- 批准号:
2224258 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CHS: Medium: Collaborative Research: Discovery and Exploration of Design Trade-Offs
CHS:媒介:协作研究:设计权衡的发现和探索
- 批准号:
1954028 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CHS: Medium: Collaborative Research: Computer-Aided Design and Fabrication for General-Purpose Knit Manufacturing
CHS:媒介:协作研究:通用针织制造的计算机辅助设计和制造
- 批准号:
1955444 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Research: Teachable Activity Trackers for Older Adults
CHS:媒介:协作研究:针对老年人的可教学活动追踪器
- 批准号:
1955590 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Research: Code demography: Addressing information needs at scale for programming interface users and designers
CHS:媒介:协作研究:代码人口统计:大规模解决编程接口用户和设计者的信息需求
- 批准号:
1955699 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Reearch: Bio-behavioral data analytics to enable personalized training of veterans for the future workforce
CHS:中:协作研究:生物行为数据分析,为未来的劳动力提供退伍军人的个性化培训
- 批准号:
1955721 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Research: Fabric-Embedded Dynamic Sensing for Adaptive Exoskeleton Assistance
CHS:媒介:协作研究:用于自适应外骨骼辅助的织物嵌入式动态传感
- 批准号:
1955979 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant














{{item.name}}会员




