CHS: Medium: Collaborative Research: Empirically Validated Perceptual Tasks for Data Visualization
CHS:媒介:协作研究:数据可视化的经验验证感知任务
基本信息
- 批准号:1900941
- 负责人:
- 金额:$ 40.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Understanding quantitative data is a foundation of science, education, and the public communication of information about public policy and health. Our brains process and understand numbers far more efficiently when we can rely on data visualizations, allowing us to process patterns in data by leveraging the 40% of our brain that processes visual patterns in the real world. Decades of research in data visualization has produced evidence-backed guidelines for how to design the best data visualization for a given data analysis or communication task. But this process is limited by our incomplete understanding of the process by which we recognize patterns in visualized data. When people see a weather map color-coded by temperature, are they processing the hot and cold colors at the same perceptual moment, or just one? When they inspect a scatterplot, are people processing individual points, or the shape of the whole collection? This project will combine past research in the study of human vision, research in data visualization, and new research at the intersection of those two fields to create a model of how the visual system pulls patterns and statistics from visualized data. This model will lead to a more complete understanding of how to best harness the power of human vision to analyze a given dataset and to communicate a critical pattern clearly to an audience; this model will then be used to improve existing visualization tools.Data visualization research has sought to find the best visualization for a given data analysis task. For example, scatterplots allow relatively precise judgment of correlations, while line graphs are a powerful way to inspect trends over time. But systematically testing the performance of many tasks across many visualizations has not revealed systematic patterns of performance that would allow us to predict why some matches lead to better performance, what design changes might alter that performance, or how novel visualizations might perform. One problem is that current work is limited to focusing on what viewers want to accomplish, without being able to capture how viewers actually perform these tasks. The goal of the proposed research is to refine and empirically evaluate a lower-level model of "perceptual tasks" that underlie higher level tasks (e.g. "What is the average value in the dataset?") based on established results in perceptual psychology. First, the team will conduct a qualitative study that documents how people break a high-level task down into perceptual tasks, followed by an empirical evaluation of those qualitative findings. Next, the team will measure the precision and operation of the proposed perceptual tasks -- Filter Image, Judge Shape, Compute Distributions and Compute Ratio -- along with other tasks identified in the first study; together, these will provide a set of empirically-backed design guidelines to improve visualization effectiveness. Finally, the team will validate the model by comparing its predictions to findings from previous literature, then integrate new guidelines as constraints into the Draco visualization recommender system, which should improve its ability to predict the performance of different visualization designs. The resulting guidelines, model, and integration into Draco promise in turn to improve visualization education and practice.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
了解定量数据是科学,教育和公共政策和健康信息的公共传播的基础。当我们能够依赖数据可视化时,我们的大脑处理和理解数字的效率要高得多,这使得我们能够利用真实的世界中处理视觉模式的40%的大脑来处理数据中的模式。几十年来,数据可视化的研究已经为如何为给定的数据分析或通信任务设计最佳的数据可视化提供了证据支持的指导方针。但是,这个过程受到我们对可视化数据中识别模式的过程的不完全理解的限制。当人们看到一张按温度进行颜色编码的天气图时,他们是在同一感知时刻处理冷热颜色,还是只处理一种颜色?当他们检查散点图时,人们是在处理单个点,还是整个集合的形状?该项目将结合联合收割机过去在人类视觉研究、数据可视化研究以及这两个领域交叉点的新研究,以创建视觉系统如何从可视化数据中提取模式和统计数据的模型。该模型将使人们更全面地了解如何最好地利用人类视觉的力量来分析给定的数据集,并将关键模式清晰地传达给受众;然后,该模型将用于改进现有的可视化工具。数据可视化研究一直在寻求为给定的数据分析任务找到最佳的可视化。例如,散点图允许相对精确地判断相关性,而线图是检查随时间变化的趋势的强大方法。但是,系统地测试许多任务在许多可视化中的性能并没有揭示出系统的性能模式,这些模式可以让我们预测为什么某些匹配会带来更好的性能,什么样的设计变化可能会改变这种性能,或者新的可视化可能会如何执行。一个问题是,目前的工作仅限于关注观众想要完成什么,而不能捕捉观众实际上是如何执行这些任务的。所提出的研究的目标是改进和经验评估一个较低级别的“感知任务”模型,该模型是较高级别任务的基础(例如,“数据集中的平均值是多少?“)基于知觉心理学的既定结果。首先,该团队将进行定性研究,记录人们如何将高级任务分解为感知任务,然后对这些定性研究结果进行实证评估。接下来,该团队将测量所提出的感知任务的精度和操作-过滤图像,判断形状,计算分布和计算比率-沿着在第一项研究中确定的其他任务;这些将提供一套有实验支持的设计指南,以提高可视化效果。最后,该团队将通过将其预测结果与以前文献的结果进行比较来验证该模型,然后将新的指导方针作为约束条件集成到Draco可视化推荐系统中,这将提高其预测不同可视化设计性能的能力。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Why Shouldn’t All Charts Be Scatter Plots? Beyond Precision-Driven Visualizations
为什么所有图表不应该都是散点图?
- DOI:10.1109/vis47514.2020.00048
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Bertini, Enrico;Correll, Michael;Franconeri, Steven
- 通讯作者:Franconeri, Steven
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Enrico Bertini其他文献
Erratum to: Redefining phenotypes associated with mitochondrial DNA single deletion
- DOI:
10.1007/s00415-015-7943-9 - 发表时间:
2015-11-14 - 期刊:
- 影响因子:4.600
- 作者:
Michelangelo Mancuso;Daniele Orsucci;Corrado Angelini;Enrico Bertini;Valerio Carelli;Giacomo Pietro Comi;Maria Alice Donati;Antonio Federico;Carlo Minetti;Maurizio Moggio;Tiziana Mongini;Filippo Maria Santorelli;Serenella Servidei;Paola Tonin;Antonio Toscano;Claudio Bruno;Luca Bello;Elena Caldarazzo Ienco;Elena Cardaioli;Michela Catteruccia;Paola Da Pozzo;Massimiliano Filosto;Costanza Lamperti;Isabella Moroni;Olimpia Musumeci;Elena Pegoraro;Dario Ronchi;Donato Sauchelli;Mauro Scarpelli;Monica Sciacco;Maria Lucia Valentino;Liliana Vercelli;Massimo Zeviani;Gabriele Siciliano - 通讯作者:
Gabriele Siciliano
In vitro neurogenesis: development and functional implications of iPSC technology
- DOI:
10.1007/s00018-013-1511-1 - 发表时间:
2013-11-20 - 期刊:
- 影响因子:6.200
- 作者:
Claudia Compagnucci;Monica Nizzardo;Stefania Corti;Ginevra Zanni;Enrico Bertini - 通讯作者:
Enrico Bertini
Antioxidant enzymes in blood of patients with Friedreich's ataxia
弗里德赖希共济失调患者血液中的抗氧化酶
- DOI:
10.1136/adc.86.5.376 - 发表时间:
2002 - 期刊:
- 影响因子:5.2
- 作者:
G. Tozzi;M. Nuccetelli;M. Bello;Sergio Bernardini;L. Bellincampi;S. Ballerini;L. Gaeta;C. Casali;A. Pastore;Giorgio Federici;Enrico Bertini;F. Piemonte - 通讯作者:
F. Piemonte
Myelinated retinal fibers in autosomal recessive spastic ataxia of Charlevoix‐Saguenay
夏勒瓦-萨格奈常染色体隐性痉挛性共济失调中的有髓视网膜纤维
- DOI:
10.1111/j.1468-1331.2010.03335.x - 发表时间:
2011 - 期刊:
- 影响因子:5.1
- 作者:
E. Vingolo;R. Fabio;S. Salvatore;G. Grieco;Enrico Bertini;Vincenzo Leuzzi;C. Nesti;A. Filla;A. Tessa;F. Pierelli;F. M. Santorelli;C. Casali - 通讯作者:
C. Casali
Merosin deficient congenital muscular dystrophy: Clinical, neuroimaging and immunohistochemical study of 8 Egyptian pediatric patients
- DOI:
10.1016/j.jgeb.2013.02.003 - 发表时间:
2013-06-01 - 期刊:
- 影响因子:
- 作者:
Laila Abdel moteleb Selim;Dina Ahmed Mehaney;Fayza Abdel Hamid Hassan;Sawsan Abdel Hady Hassan;Iman Gamaleldin;Randa Sabry;Enrico Bertini - 通讯作者:
Enrico Bertini
Enrico Bertini的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Enrico Bertini', 18)}}的其他基金
RAPID: Visualizing Epidemical Uncertainty for Personal Risk Assessment
RAPID:可视化流行病不确定性以进行个人风险评估
- 批准号:
2235625 - 财政年份:2022
- 资助金额:
$ 40.24万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Research: Empirically Validated Perceptual Tasks for Data Visualization
CHS:媒介:协作研究:数据可视化的经验验证感知任务
- 批准号:
2236644 - 财政年份:2022
- 资助金额:
$ 40.24万 - 项目类别:
Standard Grant
RAPID: Visualizing Epidemical Uncertainty for Personal Risk Assessment
RAPID:可视化流行病不确定性以进行个人风险评估
- 批准号:
2028374 - 财政年份:2020
- 资助金额:
$ 40.24万 - 项目类别:
Standard Grant
CRI: II-New: An Infrastructure of Display Devices to Study Visual Analytics Beyond the Desktop
CRI:II-新:用于研究桌面之外的视觉分析的显示设备基础设施
- 批准号:
1730396 - 财政年份:2017
- 资助金额:
$ 40.24万 - 项目类别:
Standard Grant
相似海外基金
CHS: Medium: Collaborative Research: Augmenting Human Cognition with Collaborative Robots
CHS:媒介:协作研究:用协作机器人增强人类认知
- 批准号:
2343187 - 财政年份:2023
- 资助金额:
$ 40.24万 - 项目类别:
Continuing Grant
CHS: Medium: Collaborative Research: Empirically Validated Perceptual Tasks for Data Visualization
CHS:媒介:协作研究:数据可视化的经验验证感知任务
- 批准号:
2236644 - 财政年份:2022
- 资助金额:
$ 40.24万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Research: Regional Experiments for the Future of Work in America
CHS:媒介:合作研究:美国未来工作的区域实验
- 批准号:
2243330 - 财政年份:2021
- 资助金额:
$ 40.24万 - 项目类别:
Continuing Grant
CHS: Medium: Collaborative Research: From Hobby to Socioeconomic Driver: Innovation Pathways to Professional Making in Asia and the American Midwest
CHS:媒介:协作研究:从爱好到社会经济驱动力:亚洲和美国中西部专业制造的创新之路
- 批准号:
2224258 - 财政年份:2021
- 资助金额:
$ 40.24万 - 项目类别:
Continuing Grant
CHS: Medium: Collaborative Research: Computer-Aided Design and Fabrication for General-Purpose Knit Manufacturing
CHS:媒介:协作研究:通用针织制造的计算机辅助设计和制造
- 批准号:
1955444 - 财政年份:2020
- 资助金额:
$ 40.24万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Research: Teachable Activity Trackers for Older Adults
CHS:媒介:协作研究:针对老年人的可教学活动追踪器
- 批准号:
1955590 - 财政年份:2020
- 资助金额:
$ 40.24万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Research: Code demography: Addressing information needs at scale for programming interface users and designers
CHS:媒介:协作研究:代码人口统计:大规模解决编程接口用户和设计者的信息需求
- 批准号:
1955699 - 财政年份:2020
- 资助金额:
$ 40.24万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Reearch: Bio-behavioral data analytics to enable personalized training of veterans for the future workforce
CHS:中:协作研究:生物行为数据分析,为未来的劳动力提供退伍军人的个性化培训
- 批准号:
1955721 - 财政年份:2020
- 资助金额:
$ 40.24万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Research: Fabric-Embedded Dynamic Sensing for Adaptive Exoskeleton Assistance
CHS:媒介:协作研究:用于自适应外骨骼辅助的织物嵌入式动态传感
- 批准号:
1955979 - 财政年份:2020
- 资助金额:
$ 40.24万 - 项目类别:
Standard Grant
CHS: Medium: Collaborative Research: Computer-Aided Design and Fabrication for General-Purpose Knit Manufacturing
CHS:媒介:协作研究:通用针织制造的计算机辅助设计和制造
- 批准号:
1956085 - 财政年份:2020
- 资助金额:
$ 40.24万 - 项目类别:
Standard Grant














{{item.name}}会员




