CNS Core: Medium: Collaborative: Exploring and Exploiting Learning for Efficient Network Control: Non-Stationarity, Inter-Dependence, and Domain-Knowledge
CNS 核心:中:协作:探索和利用学习实现高效网络控制:非平稳性、相互依赖和领域知识
基本信息
- 批准号:1901103
- 负责人:
- 金额:$ 33.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Traditionally, computer network protocols and control mechanisms are designed and engineered in accordance with certain theoretical models or design principles, under (often simplifying) assumptions about the network environment in which they operate. Network operations are mostly performed by operators through manual configurations of control parameters and resources, sometimes guided by measurement analysis and performance optimization. With the increasingly wide range of applications and complex network scenarios, traditional methods do not always perform well. To address this challenge, machine learning (ML) techniques have been applied to a wide range of networking and distributed systems problems, from reducing data center cooling costs to traffic optimization and application management. While preliminary results are promising, applying machine learning techniques to networking pose many important research questions that must be explored systematically and in depth. The proposed research constitutes an important first step toward providing a principled understanding of the fundamental limitations and promising new opportunities in learning-based network control from both theoretical and practical perspectives. It will help advance the emerging visions of self-driving networks and AIOps (Artificial Intelligence for IT Operations), and bring benefits to network operators, users, and the society at large. This project also integrates research with education and broadens participation in computing, especially with recruitment and training of female and under-represented students and outreach activities to K-12. Networks are a collection of control and (distributed) data plane elements that operate at different time scales on diverse types of data, respond and adapt to changes in traffic demands and the network state to achieve disparate objectives. The networking environments are highly dynamic and uncertain, with non-stationarity caused by surges and time-of-day changes in traffic demands, and unpredictable network failures; they are also inherently correlated, inter-dependent and constrained, in part due to complex interactions of various network entities. Moreover, networks are engineered systems -- there are basic principles that govern their designs and operations, with constraints that cannot be violated and inherent relations that could yield substantial performance gains. The proposed research focuses on learning-based network control problems to address these challenges along the following inter-related research thrusts. In Thrust 1, Network-Centric Learning Techniques, this project will explore the fundamental limits (from a theoretical perspective) and advance new network-centric ML techniques for non-stationary, correlated and constrained environments. In Thrust 2, Network-wide Learning-based Control and Horizontal/Vertical Interactions, this project will study and develop innovative learning-based network control algorithms in a network-wide framework by exploiting the (horizontal and vertical) interactions and leveraging shared learning. Last but not the least, in the Evaluation Thrust, this project will evaluate the proposed learning-based network control algorithms and compare them with conventional optimization and other ML based approaches.The project information such as publications, algorithms developed, data collected and personnel, will be made publicly available at https://web.cs.ucdavis.edu/~liu/Research/Holistic.htm during the entire project duration and for five years after the completion of this project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
传统上,计算机网络协议和控制机制是根据某些理论模型或设计原则来设计和设计的,这些理论模型或设计原则是在(通常是简化的)关于它们运行的网络环境的假设下进行的。网络操作主要由运营商通过手动配置控制参数和资源来执行,有时还会以测量分析和性能优化为指导。随着应用的日益广泛和复杂的网络场景,传统的方法并不总是表现良好。为了应对这一挑战,机器学习(ML)技术已被应用于广泛的网络和分布式系统问题,从降低数据中心冷却成本到流量优化和应用管理。虽然初步结果是有希望的,但将机器学习技术应用于网络提出了许多重要的研究问题,必须系统和深入地探索。这项拟议的研究是从理论和实践两个角度对基于学习的网络控制的基本局限性和有希望的新机会进行原则性理解的重要的第一步。它将有助于推动自动驾驶网络和AIOps(人工智能)的新兴愿景,并为网络运营商、用户和整个社会带来好处。该项目还将研究与教育结合起来,扩大对计算机的参与,特别是招募和培训女学生和任职人数不足的学生,并向12岁以下儿童开展外联活动。网络是控制和(分布式)数据平面元素的集合,它们以不同的时间尺度对不同类型的数据进行操作,响应并适应流量需求和网络状态的变化,以实现不同的目标。网络环境是高度动态和不确定的,流量需求的激增和时间变化以及不可预测的网络故障造成了非平稳性;它们还内在地相互关联、相互依赖和约束,部分原因是各种网络实体的复杂交互。此外,网络是工程化的系统--有管理其设计和操作的基本原则,有不能违反的限制和可以产生实质性性能提升的内在关系。建议的研究重点是基于学习的网络控制问题,以解决这些挑战,沿着以下相互关联的研究主线。在主题1,以网络为中心的学习技术,这个项目将探索基本的限制(从理论的角度),并为非静态、相关和受限的环境提出新的以网络为中心的学习技术。在推力2,基于网络的学习控制和水平/垂直互动中,该项目将通过利用(水平和垂直)互动和利用共享学习,在网络范围的框架内研究和开发创新的基于学习的网络控制算法。最后但并非最不重要的是,在评估推力中,本项目将评估建议的基于学习的网络控制算法,并将它们与传统的优化和其他基于ML的方法进行比较。项目信息,如出版物、开发的算法、收集的数据和人员,将在整个项目持续时间和项目完成后的五年内在https://web.cs.ucdavis.edu/~liu/Research/Holistic.htm上公开。该奖项反映了国家科学基金会的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(29)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Kaala: scalable, end-to-end, IoT system simulator
Kaala:可扩展、端到端的物联网系统模拟器
- DOI:10.1145/3538393.3544937
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Dayalan, Udhaya Kumar;Fezeu, Rostand A.;Salo, Timothy J.;Zhang, Zhi-Li
- 通讯作者:Zhang, Zhi-Li
Domain Disentangled Meta-Learning
- DOI:10.1137/1.9781611977653.ch61
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Xin Zhang;Yanhua Li;Ziming Zhang;Zhi-Li Zhang
- 通讯作者:Xin Zhang;Yanhua Li;Ziming Zhang;Zhi-Li Zhang
Making content caching policies 'smart' using the deepcache framework
- DOI:10.1145/3310165.3310174
- 发表时间:2019-01
- 期刊:
- 影响因子:0
- 作者:A. Narayanan;Saurabh Verma;Eman Ramadan;Pariya Babaie;Zhi-Li Zhang
- 通讯作者:A. Narayanan;Saurabh Verma;Eman Ramadan;Pariya Babaie;Zhi-Li Zhang
Raven: belady-guided, predictive (deep) learning for in-memory and content caching
- DOI:10.1145/3555050.3569134
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:Xinyue Hu;Eman Ramadan;Wei Ye;Feng Tian;Zhi-Li Zhang
- 通讯作者:Xinyue Hu;Eman Ramadan;Wei Ye;Feng Tian;Zhi-Li Zhang
COREL: Constrained Reinforcement Learning for Video Streaming ABR Algorithm Design Over mmWave 5G
- DOI:10.1109/cqr59928.2023.10317803
- 发表时间:2023-10
- 期刊:
- 影响因子:0
- 作者:Xinyue Hu;Arnob Ghosh;Xin Liu;Zhi-Li Zhang;N. Shroff
- 通讯作者:Xinyue Hu;Arnob Ghosh;Xin Liu;Zhi-Li Zhang;N. Shroff
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhi-Li Zhang其他文献
End-to-end support for statistical quality-of-service guarantees in multimedia networks
- DOI:
- 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
Zhi-Li Zhang - 通讯作者:
Zhi-Li Zhang
Decoupling QoS control from core routers: a novel bandwidth broker architecture for scalable support of guaranteed services
- DOI:
10.1145/347059.347403 - 发表时间:
2000-08 - 期刊:
- 影响因子:0
- 作者:
Zhi-Li Zhang - 通讯作者:
Zhi-Li Zhang
Equivalent resistance of a periodic and asymmetric 2 × emn/em resistor network
周期性和不对称2×EMN/EMN电阻网络的等效电阻
- DOI:
10.1016/j.rinp.2024.107683 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:4.600
- 作者:
Xin-Yu Fang;Zhi-Li Zhang;Zhi-Zhong Tan - 通讯作者:
Zhi-Zhong Tan
Equivalent resistance of a periodic and asymmetric 2 × <em>n</em> resistor network
- DOI:
10.1016/j.rinp.2024.107683 - 发表时间:
2024-05-01 - 期刊:
- 影响因子:
- 作者:
Xin-Yu Fang;Zhi-Li Zhang;Zhi-Zhong Tan - 通讯作者:
Zhi-Zhong Tan
Feel free to cache: Towards an open CDN architecture for cloud-based content distribution
- DOI:
10.1109/cts.2014.6867612 - 发表时间:
2014-05 - 期刊:
- 影响因子:0
- 作者:
Zhi-Li Zhang - 通讯作者:
Zhi-Li Zhang
Zhi-Li Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhi-Li Zhang', 18)}}的其他基金
Collaborative Research: CISE: Large: Integrated Networking, Edge System and AI Support for Resilient and Safety-Critical Tele-Operations of Autonomous Vehicles
合作研究:CISE:大型:集成网络、边缘系统和人工智能支持自动驾驶汽车的弹性和安全关键远程操作
- 批准号:
2321531 - 财政年份:2023
- 资助金额:
$ 33.13万 - 项目类别:
Continuing Grant
Collaborative Research:SWIFT: Exploiting Application Semantics in Intelligent Cross-Layer Design to Enhance End-to-End Spectrum Efficiency
合作研究:SWIFT:利用智能跨层设计中的应用语义来提高端到端频谱效率
- 批准号:
2128489 - 财政年份:2021
- 资助金额:
$ 33.13万 - 项目类别:
Standard Grant
CNS Core:Medium: NFLambda -- A Granular, Scalable and Secure NFV Framework for High Performance Packet Processing at 100 Gbps and Beyond
CNS 核心:中:NFLambda——一种精细、可扩展且安全的 NFV 框架,用于 100 Gbps 及以上的高性能数据包处理
- 批准号:
2106771 - 财政年份:2021
- 资助金额:
$ 33.13万 - 项目类别:
Standard Grant
SCC: Leveraging Autonomous Shared Vehicles for Greater Community Health, Equity, Livability, and Prosperity (HELP)
SCC:利用自动共享车辆促进更大社区的健康、公平、宜居性和繁荣(HELP)
- 批准号:
1831140 - 财政年份:2018
- 资助金额:
$ 33.13万 - 项目类别:
Standard Grant
ICE-T:RC: Accelerating NFV Service Function Chain Processing at Scale
ICE-T:RC:加速大规模 NFV 服务功能链处理
- 批准号:
1836772 - 财政年份:2018
- 资助金额:
$ 33.13万 - 项目类别:
Standard Grant
NeTS: Small: Collaborative Research: Lightweight Adaptive Algorithms for Network Optimization at Scale towards Emerging Services
NetS:小型:协作研究:面向新兴服务的大规模网络优化的轻量级自适应算法
- 批准号:
1814322 - 财政年份:2018
- 资助金额:
$ 33.13万 - 项目类别:
Standard Grant
NeTS: Small: Exerting Logically Centralized Control over Legacy Switches via Incremental SDN Deployment
NeTS:小型:通过增量 SDN 部署对传统交换机进行逻辑集中控制
- 批准号:
1618339 - 财政年份:2016
- 资助金额:
$ 33.13万 - 项目类别:
Standard Grant
NeTS: Small: Diverse and Resilient Beyond Paths
NeTS:小:超越路径的多样性和弹性
- 批准号:
1617729 - 财政年份:2016
- 资助金额:
$ 33.13万 - 项目类别:
Standard Grant
NeTS: Large: Collaborative Research: Complex Interactions in the Content Distribution Ecosystem
NeTS:大型:协作研究:内容分发生态系统中的复杂交互
- 批准号:
1411636 - 财政年份:2014
- 资助金额:
$ 33.13万 - 项目类别:
Continuing Grant
NeTS: Small: Understanding, Managing and Trouble-Shooting the Evolving Cellular Data Networks
NeTS:小型:了解、管理和排除不断发展的蜂窝数据网络的故障
- 批准号:
1117536 - 财政年份:2011
- 资助金额:
$ 33.13万 - 项目类别:
Standard Grant
相似国自然基金
胆固醇羟化酶CH25H非酶活依赖性促进乙型肝炎病毒蛋白Core及Pre-core降解的分子机制研究
- 批准号:82371765
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
锕系元素5f-in-core的GTH赝势和基组的开发
- 批准号:22303037
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于合成致死策略搭建Core-matched前药共组装体克服肿瘤耐药的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:
鼠伤寒沙门氏菌LPS core经由CD209/SphK1促进树突状细胞迁移加重炎症性肠病的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于外泌体精准调控的“核-壳”(core-shell)同步血管化骨组织工程策略的应用与机制探讨
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:
肌营养不良蛋白聚糖Core M3型甘露糖肽的精确制备及功能探索
- 批准号:92053110
- 批准年份:2020
- 资助金额:70.0 万元
- 项目类别:重大研究计划
Core-1-O型聚糖黏蛋白缺陷诱导胃炎发生并介导慢性胃炎向胃癌转化的分子机制研究
- 批准号:81902805
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
原始地球增生晚期的Core-merging大碰撞事件:地核增生、核幔平衡与核幔边界结构的新认识
- 批准号:41973063
- 批准年份:2019
- 资助金额:65.0 万元
- 项目类别:面上项目
CORDEX-CORE区域气候模拟与预估研讨会
- 批准号:41981240365
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
RBM38通过协助Pol-ε结合、招募core调控HBV复制
- 批准号:31900138
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CNS Core: Medium: Reconfigurable Kernel Datapaths with Adaptive Optimizations
协作研究:CNS 核心:中:具有自适应优化的可重构内核数据路径
- 批准号:
2345339 - 财政年份:2023
- 资助金额:
$ 33.13万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Movement of Computation and Data in Splitkernel-disaggregated, Data-intensive Systems
合作研究:CNS 核心:媒介:Splitkernel 分解的数据密集型系统中的计算和数据移动
- 批准号:
2406598 - 财政年份:2023
- 资助金额:
$ 33.13万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Medium: Innovating Volumetric Video Streaming with Motion Forecasting, Intelligent Upsampling, and QoE Modeling
合作研究:CNS 核心:中:通过运动预测、智能上采样和 QoE 建模创新体积视频流
- 批准号:
2409008 - 财政年份:2023
- 资助金额:
$ 33.13万 - 项目类别:
Continuing Grant
CNS Core: Medium: Privacy-Preserving and Censorship-Resistant Domain Name System
CNS 核心:中:隐私保护和抗审查域名系统
- 批准号:
2310927 - 财政年份:2023
- 资助金额:
$ 33.13万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Programmable Computational Antennas for Sensing and Communications
合作研究:中枢神经系统核心:中:用于传感和通信的可编程计算天线
- 批准号:
2343964 - 财政年份:2023
- 资助金额:
$ 33.13万 - 项目类别:
Standard Grant
CNS Core: Medium: A Systems and User-based Approach to Floating Point Correctness and Resilience
CNS 核心:中:基于系统和用户的浮点正确性和弹性方法
- 批准号:
2211315 - 财政年份:2022
- 资助金额:
$ 33.13万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Medium: The Privacy Backplane - A Full Stack Approach to Individualized Privacy Controls Throughout the Internet-of-Things
合作研究:CNS 核心:媒介:隐私背板 - 整个物联网个性化隐私控制的全栈方法
- 批准号:
2211508 - 财政年份:2022
- 资助金额:
$ 33.13万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Medium: Access, Mobility, and Security above 100 GHz
合作研究:CNS 核心:中:100 GHz 以上的访问、移动性和安全性
- 批准号:
2211617 - 财政年份:2022
- 资助金额:
$ 33.13万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Medium: Access, Mobility, and Security above 100 GHz
合作研究:CNS 核心:中:100 GHz 以上的访问、移动性和安全性
- 批准号:
2211618 - 财政年份:2022
- 资助金额:
$ 33.13万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Medium: Rethinking Multi-User VR - Jointly Optimized Representation, Caching and Transport
合作研究:CNS 核心:媒介:重新思考多用户 VR - 联合优化表示、缓存和传输
- 批准号:
2212200 - 财政年份:2022
- 资助金额:
$ 33.13万 - 项目类别:
Continuing Grant