RI: Medium: Collaborative Research: Through synapses to spatial learning--a topological approach
RI:媒介:协作研究:通过突触进行空间学习——一种拓扑方法
基本信息
- 批准号:1901338
- 负责人:
- 金额:$ 46.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
There is a tension in neuroscience between the emergent phenomena of interested, such as learning and memory, and the level at which most data are acquired. For example, numerous experimental labs study how the strengths of synaptic connections and their dynamics affect cognition by establishing empirical correlations between in vitro electrophysiology measurements and data collected in animal behavioral experiments. However, these correlations fall short of causal explanations: to date, there exist no mechanisms connecting recordings in individual neurons and synapses with cognitive learning dynamics. The problem is not due to a lack of observations at either the neuronal or the systemic level; rather, it reflects a principal gap in our ability to link these two scales. Even if a full description of every neuron in the brain could be produced, there would still be a gap in our ability to transition from local data to making qualitative conclusions about how it combines to produce systemic cognitive outcomes. Addressing this problem requires a conceptual framework encompassing a computational model that would link the experimentally derived characteristics of individual cells with effects of those characteristics at the ensemble level. The proposed research aims to provide a way to establish such a connection: developing a data-driven, systemic model of hippocampal spatial learning based on the parameters of the hippocampal synaptic architecture, including the parameters of synaptic plasticity, using novel topological and geometric techniques. Recent developments in Algebraic Topology will be used to integrate the parameters of synaptic connectivity and synaptic plasticity (e.g., long- and short-term potentiation and depression), to study structure of this map, the mechanisms of its formation and deterioration, and to evaluate the time required to produce a spatial map of a given environment, etc. This project is a natural evolution of prior work done by the Dabaghian group on modeling the mechanisms of spatial learning, based on algebraic topology methods developed by the M?moli group. The theory-based insight into learning phenomena will produce a qualitatively better understanding of how to interpret data, how to design new experiments, what variables should be targeted in measurements, as well as how to minimize use of animals, and in general how to optimize use physical and intellectual resources.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在神经科学中,人们感兴趣的突发现象(如学习和记忆)与获得大多数数据的水平之间存在紧张关系。例如,许多实验实验室通过在体外电生理测量和动物行为实验中收集的数据之间建立经验相关性来研究突触连接的强度及其动态如何影响认知。然而,这些相关性缺乏因果解释:迄今为止,还没有将单个神经元和突触的记录与认知学习动态联系起来的机制。这个问题不是由于缺乏在神经元或系统水平上的观察;相反,它反映了我们将这两个尺度联系起来的能力的主要差距。即使可以对大脑中的每个神经元进行完整的描述,我们从局部数据过渡到关于如何结合产生系统认知结果的定性结论的能力仍然存在差距。解决这一问题需要一个概念框架,其中包括一个计算模型,该模型将单个细胞的实验衍生特征与这些特征在整体水平上的影响联系起来。本研究旨在提供一种建立这种联系的方法:利用新颖的拓扑和几何技术,基于海马突触结构参数,包括突触可塑性参数,开发一个数据驱动的海马空间学习系统模型。代数拓扑的最新发展将用于整合突触连通性和突触可塑性的参数(例如,长期和短期增强和抑制),研究该地图的结构,其形成和恶化的机制,并评估生成给定环境的空间地图所需的时间等。这个项目是Dabaghian小组先前在空间学习机制建模方面所做的工作的自然演变,该工作基于M?moli组。以理论为基础的对学习现象的洞察将在定性上更好地理解如何解释数据,如何设计新的实验,测量中应该针对哪些变量,以及如何最大限度地减少动物的使用,以及总体上如何优化使用体力和智力资源。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Pattern dynamics and stochasticity of the brain rhythms
- DOI:10.1101/2022.05.06.490960
- 发表时间:2022-05
- 期刊:
- 影响因子:11.1
- 作者:C. Hoffman;Jingheng Cheng;D. Ji;Y. Dabaghian
- 通讯作者:C. Hoffman;Jingheng Cheng;D. Ji;Y. Dabaghian
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yuri Dabaghian其他文献
Altered patterning of neural activity in a neuropathology
神经病理学中神经活动模式的改变
- DOI:
10.1038/s41598-025-08538-6 - 发表时间:
2025-07-16 - 期刊:
- 影响因子:3.900
- 作者:
Clarissa Hoffman;Jingheng Cheng;Rodrigo Morales;Daoyun Ji;Yuri Dabaghian - 通讯作者:
Yuri Dabaghian
Yuri Dabaghian的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yuri Dabaghian', 18)}}的其他基金
RI: Small: Collaborative Research: Robustness of Spatial Learning in Flickering Networks: The Case of the Hippocampus
RI:小型:协作研究:闪烁网络中空间学习的鲁棒性:海马体的案例
- 批准号:
1422438 - 财政年份:2014
- 资助金额:
$ 46.5万 - 项目类别:
Standard Grant
相似海外基金
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312841 - 财政年份:2023
- 资助金额:
$ 46.5万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312842 - 财政年份:2023
- 资助金额:
$ 46.5万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313151 - 财政年份:2023
- 资助金额:
$ 46.5万 - 项目类别:
Continuing Grant
Collaborative Research: RI: Medium: Principles for Optimization, Generalization, and Transferability via Deep Neural Collapse
合作研究:RI:中:通过深度神经崩溃实现优化、泛化和可迁移性的原理
- 批准号:
2312840 - 财政年份:2023
- 资助金额:
$ 46.5万 - 项目类别:
Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
- 批准号:
2312374 - 财政年份:2023
- 资助金额:
$ 46.5万 - 项目类别:
Standard Grant
Collaborative Research: CompCog: RI: Medium: Understanding human planning through AI-assisted analysis of a massive chess dataset
合作研究:CompCog:RI:中:通过人工智能辅助分析海量国际象棋数据集了解人类规划
- 批准号:
2312373 - 财政年份:2023
- 资助金额:
$ 46.5万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313149 - 财政年份:2023
- 资助金额:
$ 46.5万 - 项目类别:
Continuing Grant
Collaborative Research: RI: Medium: Superhuman Imitation Learning from Heterogeneous Demonstrations
合作研究:RI:媒介:异质演示中的超人模仿学习
- 批准号:
2312955 - 财政年份:2023
- 资助金额:
$ 46.5万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Informed, Fair, Efficient, and Incentive-Aware Group Decision Making
协作研究:RI:媒介:知情、公平、高效和具有激励意识的群体决策
- 批准号:
2313137 - 财政年份:2023
- 资助金额:
$ 46.5万 - 项目类别:
Standard Grant
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313150 - 财政年份:2023
- 资助金额:
$ 46.5万 - 项目类别:
Continuing Grant