IIBR: Development of enhanced computational protein design methods using a metaanalysis of enzyme dynamics
IIBR:利用酶动力学荟萃分析开发增强型计算蛋白质设计方法
基本信息
- 批准号:1901709
- 负责人:
- 金额:$ 79.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Proteins are biomolecules that carry out the cellular processes that are fundamental to life. It has recently become well-established that concerted motions (dynamics) within proteins are directly correlated to their function, but an incomplete understanding of this relationship currently exists. To further elucidate the link between protein dynamics and function, recently developed computational methods will be used to first identify and subsequently classify networks of interactions in proteins that are directly responsible for defining the motions that underpin their functions. Information regarding these networks will be organized in a database that will be made freely available to researchers interested in both studying protein function or rationally engineering proteins that possess desired functions. The potential utility of this database will then be directly tested by using the information contained therein to improve protein engineering efforts. Enhanced proteins generated using this database will be experimentally characterized in an effort to both validate and subsequently improve the information contained therein. This will not only lead to a deeper understanding of the relationship between protein dynamics and protein function but will also find immediate use in myriad biotechnological applications including the development of new protein-based drugs, enhanced agricultural products or the production of new, functional biomaterials. An enhanced understanding of the relationship between protein dynamics and function can also readily be incorporated into educational materials using a popular online protein folding game, FoldIt, which will be used in outreach activities that seek to inspire interest in STEM fields at the high school educational level.The primary goals of the proposed research are 1) to better elucidate the complex relationship between protein dynamics and function and 2) to develop new computational protein design algorithms that enable the rational design of functional proteins from scratch. Our current understanding of the relationship between protein sequences, their structures and functions has benefitted substantially from the aggregation and dissemination of this information in publicly accessible databases. Although a direct link between correlated motions in proteins and the functions they carry out is well-established, no database of protein dynamics currently exists, which we believe severely limits our ability rationally engineer functional proteins. We will address this challenge by generating the first large-scale database of the dynamic signatures of proteins of known function and then cluster these data both within and across enzyme functional classes. Our findings will be incorporated into the Rosetta protein design software to develop dynamics-based computational protein design methods that will subsequently be used to engineer new dynamic networks within proteins. This will serve as a direct test of our understanding of the relationship between protein structure, dynamics and function. Experimental characterization of our designed proteins will serve to improve our computational methods and will further enhance our understanding of the interplay between dynamics and protein function. The long-term goal of this study will be to use the lessons learned in this study to generate cutting edge computational protein design tools that could be used to study enzyme function, enhance the catalytic efficiencies of existing designed enzymes and enable the de novo design of artificial enzymes with desired activities.Results of this project will be reported at https://sms.asu.edu/jeremy_mills and http://ozkanlab.physics.asu.edu/research.html.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
蛋白质是执行对生命至关重要的细胞过程的生物分子。最近,蛋白质内部的协调运动(动力学)与其功能直接相关这一点已经得到证实,但目前对这种关系的理解还不完全。为了进一步阐明蛋白质动力学和功能之间的联系,最近开发的计算方法将被用于首先识别并随后对蛋白质中的相互作用网络进行分类,这些网络直接负责定义支撑其功能的运动。有关这些网络的信息将被组织在一个数据库中,研究人员对研究蛋白质功能或合理设计具有所需功能的蛋白质感兴趣,可以免费使用该数据库。然后,将通过使用其中包含的信息来直接测试该数据库的潜在用途,以改进蛋白质工程工作。将对使用该数据库产生的增强蛋白质进行实验表征,以验证并随后改进其中包含的信息。这不仅将加深对蛋白质动力学和蛋白质功能之间关系的理解,还将立即用于无数生物技术应用,包括开发新的基于蛋白质的药物、增强农产品或生产新的功能生物材料。使用流行的在线蛋白质折叠游戏Foldit,也可以很容易地将对蛋白质动力学和功能之间关系的加深理解纳入教材中,该游戏将用于寻求激发高中教育水平对STEM领域的兴趣的扩展活动。拟议研究的主要目标是:1)更好地阐明蛋白质动力学和功能之间的复杂关系;2)开发新的计算蛋白质设计算法,使功能蛋白质能够从零开始进行合理设计。我们目前对蛋白质序列、其结构和功能之间的关系的理解大大得益于这些信息在公共可访问数据库中的聚集和传播。尽管蛋白质中相关的运动和它们执行的功能之间的直接联系已经得到了很好的证实,但目前还没有蛋白质动力学的数据库,我们认为这严重限制了我们合理设计功能蛋白质的能力。我们将通过生成已知功能的蛋白质的动态签名的第一个大规模数据库来解决这一挑战,然后在酶功能类内和跨酶功能类对这些数据进行集群。我们的发现将被整合到Rosetta蛋白质设计软件中,以开发基于动力学的计算蛋白质设计方法,这些方法将随后用于设计蛋白质内新的动态网络。这将直接测试我们对蛋白质结构、动力学和功能之间关系的理解。对我们设计的蛋白质进行实验表征将有助于改进我们的计算方法,并将进一步增强我们对动力学和蛋白质功能之间相互作用的理解。这项研究的长期目标将是利用在这项研究中学到的经验来产生尖端的计算蛋白质设计工具,这些工具可以用于研究酶的功能,提高现有设计酶的催化效率,并能够重新设计具有所需活性的人造酶。该项目的结果将在https://sms.asu.edu/jeremy_mills上报告,http://ozkanlab.physics.asu.edu/research.html.This奖反映了美国国家科学基金会的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Design of novel cyanovirin-N variants by modulation of binding dynamics through distal mutations.
- DOI:10.7554/elife.67474
- 发表时间:2022-12-06
- 期刊:
- 影响因子:7.7
- 作者:Kazan IC;Sharma P;Rahman MI;Bobkov A;Fromme R;Ghirlanda G;Ozkan SB
- 通讯作者:Ozkan SB
Allosteric regulatory control in dihydrofolate reductase is revealed by dynamic asymmetry
- DOI:10.1002/pro.4700
- 发表时间:2023-06
- 期刊:
- 影响因子:8
- 作者:I. C. Kazan;J. Mills;S. Ozkan
- 通讯作者:I. C. Kazan;J. Mills;S. Ozkan
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeremy Mills其他文献
Jeremy Mills的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jeremy Mills', 18)}}的其他基金
Collaborative Research: Dissecting photoconversion in fluorescent proteins frame by frame
合作研究:逐帧剖析荧光蛋白中的光转换
- 批准号:
1817847 - 财政年份:2018
- 资助金额:
$ 79.71万 - 项目类别:
Standard Grant
相似国自然基金
水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
- 批准号:32070202
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
Development of in situ ammonia capture for enhanced catalytic ammonia synthesis
开发用于增强催化氨合成的原位氨捕获
- 批准号:
24K17765 - 财政年份:2024
- 资助金额:
$ 79.71万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Designing synthetic matrices for enhanced organoid development: A step towards better disease understanding
设计合成基质以增强类器官发育:更好地了解疾病的一步
- 批准号:
MR/Y033760/1 - 财政年份:2024
- 资助金额:
$ 79.71万 - 项目类别:
Research Grant
Presymptom: development of a novel machine-learning-derived diagnostic test to rule out infection to enable enhanced clinical care and better targeted anti-microbial use
症状前:开发一种新型的机器学习诊断测试来排除感染,从而加强临床护理和更有针对性的抗菌药物使用
- 批准号:
10089281 - 财政年份:2024
- 资助金额:
$ 79.71万 - 项目类别:
Investment Accelerator
Development of coherent Raman spectroscopy based on cavity-enhanced phase-matched nonlinear optics
基于腔增强相位匹配非线性光学的相干拉曼光谱研究进展
- 批准号:
23H01987 - 财政年份:2023
- 资助金额:
$ 79.71万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The Role of VEGF in the Development of Low Back Pain Following IVD Injury
VEGF 在 IVD 损伤后腰痛发展中的作用
- 批准号:
10668079 - 财政年份:2023
- 资助金额:
$ 79.71万 - 项目类别:
Development of a Piezoelectric Intramedullary Nail for Enhanced Fracture Healing
开发用于增强骨折愈合的压电髓内钉
- 批准号:
10759862 - 财政年份:2023
- 资助金额:
$ 79.71万 - 项目类别:
Development of Enhanced Anti-inflammatory Blood Mononuclear Cell Therapy for ARDS and Elucidation of the Molecular Mechanism
ARDS增强抗炎血液单核细胞治疗的进展及分子机制的阐明
- 批准号:
23K07659 - 财政年份:2023
- 资助金额:
$ 79.71万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
AAV-delivery of enhanced potassium channel in refractory epilepsy: CTA-enabling preclinical development programme
AAV 在难治性癫痫中增强钾通道的传递:支持 CTA 的临床前开发计划
- 批准号:
10049663 - 财政年份:2023
- 资助金额:
$ 79.71万 - 项目类别:
Investment Accelerator
Development of nanodroplet enhanced ultrasonic cavitation technologyto enable the study of chromatin accessibility in FFPE tissues
开发纳米液滴增强超声空化技术以实现 FFPE 组织中染色质可及性的研究
- 批准号:
10699112 - 财政年份:2023
- 资助金额:
$ 79.71万 - 项目类别:
Development of Digital Oil Technique for Optimal Design of CO2-Enhanced Oil Recovery
二氧化碳提高采收率优化设计的数字石油技术开发
- 批准号:
23K04647 - 财政年份:2023
- 资助金额:
$ 79.71万 - 项目类别:
Grant-in-Aid for Scientific Research (C)