Explicit Methods for Finding Rational Points on Varieties

寻找品种有理点的显式方法

基本信息

  • 批准号:
    1902199
  • 负责人:
  • 金额:
    $ 21.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-01 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

The project concerns various problems tied to number theory and algebraic geometry. Specifically, finding rational solutions to a system of polynomial equations has been the subject of active research since the ancient times. These rational points are quite sparse; Faltings (1983) proved that there are only finitely many rational points on curves of genus at least 2, and the minimalist conjecture asserts that most elliptic curves have low ranks as well. The sparsity of rational points have an application in the field of cryptography, as the explicit computation of various invariants of elliptic curves is often difficult.This project aims to further this point of view using various techniques coming from number theory, algebraic geometry, and logic. On one hand, the PI wishes to develop explicit p-adic methods that help find these rational points. On the other hand, heuristic arguments that approximate the difficulty of these methods can be helpful. These heuristics can range from finding a simple model for certain arithmetic invariants tied to the distribution of rational points, to arguments based in logic, to the estimate of computational complexity in the explicit computation of these invariants. These heuristics could have real-life consequences in, for example, approximating the hardness of isogeny-based cryptography.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目涉及与数论和代数几何有关的各种问题。具体地说,自古以来,寻找多项式方程组的有理解一直是活跃研究的主题。这些有理点是相当稀疏的;Faltings(1983)证明了亏格至少为2的曲线上只有有限多个有理点,极小主义猜想断言大多数椭圆曲线也有低阶。有理点的稀疏性在密码学领域有着广泛的应用,因为椭圆曲线的各种不变量的显式计算往往是困难的,本项目旨在利用数论、代数几何和逻辑的各种技术来进一步说明这一观点。一方面,PI希望开发出显式的p-adi方法来帮助找到这些有理点。另一方面,与这些方法的难度相近的启发式论证可能会有所帮助。这些启发式方法的范围可以从为与有理点的分布相关的某些算术不变量找到一个简单的模型,到基于逻辑的论点,再到在这些不变量的显式计算中的计算复杂性的估计。这些启发式算法可能会产生现实生活中的后果,例如,接近基于同源的密码学的难度。这一裁决反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jennifer Park其他文献

The impact of the anastomotic configuration on low anterior resection syndrome 3 years after total mesorectal excision for rectal cancer: a national cohort study
吻合构型对直肠癌全直肠系膜切除术后 3 年低位前切除综合征的影响:一项全国队列研究
  • DOI:
    10.1111/codi.16523
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    S. Sandberg;D. Bock;M. Lydrup;Jennifer Park;M. Rutegård;E. Angenete
  • 通讯作者:
    E. Angenete
Community Practice Patterns for Bacterial Corneal Ulcer Evaluation and Treatment
细菌性角膜溃疡评估和治疗的社区实践模式
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jennifer Park;K. M. Lee;Helen Zhou;M. Rabin;Kevin Jwo;W. Burton;D. Gritz
  • 通讯作者:
    D. Gritz
Using a Crowdsourcing Approach for Network Verification
使用众包方法进行网络验证
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N. Boukharov;Jennifer Park
  • 通讯作者:
    Jennifer Park
A randomized, multicenter, phase II trial of gemcitabine (G), cisplatin (C) +/- veliparib (V) in patients with pancreas adenocarcinoma (PDAC) and a known germline (g)BRCA/ PALB2 mutation.
一项针对胰腺腺癌 (PDAC) 和已知种系 (g)BRCA/PALB2 突变的患者进行的吉西他滨 (G)、顺铂 (C) /- veliparib (V) 的随机、多中心 II 期试验。
  • DOI:
    10.1200/jco.2020.38.4_suppl.639
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    45.3
  • 作者:
    E. O’Reilly;Jonathan W. Lee;M. Zalupski;M. Capanu;Jennifer Park;T. Golan;E. Tahover;M. Lowery;J. Chou;V. Sahai;R. Brenner;H. Kindler;Kenneth H. Yu;A. Zervoudakis;S. Vemuri;Z. Stadler;R. Do;N. Dhani;A. Chen;D. Kelsen
  • 通讯作者:
    D. Kelsen
Cycles in the Supersingular ℓ-Isogeny Graph and Corresponding Endomorphisms
超奇异 ℓ-同构图中的循环和相应的同态
  • DOI:
    10.1007/978-3-030-19478-9_2
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Efrat Bank;Catalina Camacho;Kirsten Eisentraeger;T. Morrison;Jennifer Park
  • 通讯作者:
    Jennifer Park

Jennifer Park的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jennifer Park', 18)}}的其他基金

FRG: Collaborative Research: Definability and Computability over Arithmetically Significant Fields
FRG:协作研究:算术上重要字段的可定义性和可计算性
  • 批准号:
    2152182
  • 财政年份:
    2022
  • 资助金额:
    $ 21.61万
  • 项目类别:
    Standard Grant
Collaborative Research: Midwest Arithmetic Geometry and Number Theory Series
合作研究:中西部算术几何与数论系列
  • 批准号:
    2005736
  • 财政年份:
    2020
  • 资助金额:
    $ 21.61万
  • 项目类别:
    Continuing Grant

相似国自然基金

Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Improvement of methods for searching vast solution spaces of tension-compression mixed form-finding problems of shells.
壳拉压混合找形问题大解空间搜索方法的改进。
  • 批准号:
    23K17784
  • 财政年份:
    2023
  • 资助金额:
    $ 21.61万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Finding a place: advancing digital methods to unlock the use of digitized book illustrations in cultural institutions
找到一个地方:推进数字方法以解锁数字化图书插图在文化机构中的使用
  • 批准号:
    AH/W005417/1
  • 财政年份:
    2022
  • 资助金额:
    $ 21.61万
  • 项目类别:
    Research Grant
Development of AI Methods for Finding Hidden Dimensions - the Physics of Correlated Atomic Motions f
寻找隐藏维度的人工智能方法的发展 - 相关原子运动的物理学
  • 批准号:
    562190-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 21.61万
  • 项目类别:
    University Undergraduate Student Research Awards
Development of Instructional Methods for Improving Context-Constructional Skills to Enhance Children's Problem Finding Ability for Profound Learning
开发提高情境建构能力的教学方法,增强儿童发现问题的能力,深入学习
  • 批准号:
    20K03381
  • 财政年份:
    2020
  • 资助金额:
    $ 21.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Finding meaning in cryptographic verification: Methods in the verification of post-quantum cryptography
寻找密码验证的意义:后量子密码验证的方法
  • 批准号:
    2744596
  • 财政年份:
    2019
  • 资助金额:
    $ 21.61万
  • 项目类别:
    Studentship
Study on vulnerability finding methods for in-vehicle systems
车载系统漏洞查找方法研究
  • 批准号:
    16K16025
  • 财政年份:
    2016
  • 资助金额:
    $ 21.61万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Dose-finding methods for molecularly targeted agents
分子靶向药物的剂量探索方法
  • 批准号:
    15K15948
  • 财政年份:
    2015
  • 资助金额:
    $ 21.61万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Developing evaluation methods on thermal environment in traditional urban living area from bioclimatic and historical way and finding the methodology to applying clue toward architectural education
从生物气候和历史角度发展传统城市居住区热环境评价方法并寻找建筑教育应用线索的方法论
  • 批准号:
    15K18168
  • 财政年份:
    2015
  • 资助金额:
    $ 21.61万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Improving logic-based hypothesis-finding methods with inverse subsumption and its applications to systems biology
利用逆包含改进基于逻辑的假设发现方法及其在系统生物学中的应用
  • 批准号:
    25730133
  • 财政年份:
    2013
  • 资助金额:
    $ 21.61万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
III: Small: Collaborative Research: Finding and Exploiting Hierarchical Structure in Time Series Using Statistical Language Processing Methods
III:小:协作研究:使用统计语言处理方法查找和利用时间序列中的层次结构
  • 批准号:
    1218318
  • 财政年份:
    2012
  • 资助金额:
    $ 21.61万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了