CMMI-EPSRC: Response to CO2 Exposure of Concrete with Natural Supplementary Cementitious Materials (RENACEM)
CMMI-EPSRC:使用天然补充胶凝材料的混凝土对二氧化碳暴露的响应 (RENACEM)
基本信息
- 批准号:1903457
- 负责人:
- 金额:$ 47.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is supported under the NSF 18-067, NSF Engineering-UKRI Engineering and Physical Sciences Research Council, funding opportunity. Concrete is the most versatile building material in the United States, used to construct and repair buildings, transportation systems, and energy infrastructure. The development, maintenance, and repair of concrete infrastructure is vital to national growth, prosperity, citizen safety, and welfare. Concrete is a complex, composite material, made of a mixture of mineral aggregates, water, portland cement, and additives that enhance its properties in the initial fluid generated upon mixing and in its final hardened state. Most modern concrete mixtures contain supplementary cementitious materials (SCMs) that partially replace portland cement to improve concrete long-term durability, lower costs, and reduce CO2 emissions associated with concrete production. The most commonly used SCMs are waste-derived, especially residual ashes from coal-fired power plants. However, changes in industrial processes and increasing demand for SCMs are leading to a shortage of high quality, waste-derived SCMs. Natural SCMs, such as calcined clays and volcanic minerals, are a promising alternative to waste-derived SCMs, and their use is rising. Advantages of natural SCMs stem in large part from their chemistry and mineralogy; they are more homogeneous than waste-derived materials, which aids in quality control. Moreover, they also provide economic, environmental, and performance benefits. The use of SCMs, however, also has a downside, i.e., the propensity to increase chemical carbonation reactions between the concrete and atmospheric CO2, which can result in corrosion of steel reinforcement, loss of strength, and cracking. Therefore, it is important to develop a better understanding of the carbonation processes in concrete containing natural SCMs in order to identify materials and mixtures that that impart benefits without sacrificing performance. By combining research expertise and resources between institutions in the United States and the United Kingdom, this project will investigate interactions between concrete containing new and promising sources of natural SCMs and CO2, new methods of testing and damage detection, and new strategies to minimize the impact of the degradation. This research can lead to the production of higher quality, lower environmental-impact concrete. As such, this research can have a broad impact on the lifespan and sustainability of concrete infrastructure, which is critical for infrastructure globally, sustainability, and workforce development. National prosperity depends on a global, sustainable approach to resource utilization and protection. Students working on this project will gain valuable international research experiences. Considering that the construction field is increasing its use of natural SCMs in concrete, understanding the contribution of natural SCMs toward carbonation degradation will be critical for the viability of this technology. Furthermore, manipulating the composition of the systems to reduce or prevent carbonation is possible, but has not previously been explored. This Response to CO2 Exposure of Concrete with Natural Supplementary Cementitious Materials (RENACEM) project is a joint United States-United Kingdom collaboration among researchers at the University of Texas at Austin, University of Leeds, and University of Sheffield to elucidate the fundamental science controlling the long-term performance of concrete produced with natural SCMs. This project will investigate the chemical interactions between concrete and atmospheric CO2 and its transport to identify meaningful methodologies for their assessment. This will underpin the adoption of new methods for testing carbonation of concrete with natural SCMs and new predictive models. RENACEM comprises five work packages (WPs). WP1 will focus on advanced characterization of natural SCMs and the development of materials with reduced carbonation susceptibility. WP2 will establish the physicochemical mechanisms governing carbonation of natural SCM-based materials, interlinking their mineralogy, phase assemblages, and microstructure with their response to natural and accelerated carbonation. WP3 will investigate in situ monitoring of pH and relative humidity changes upon CO2 exposure of natural SCM-based concrete using advanced fiber optic sensing networks. WP4 will move beyond the state of the art in modeling of carbonation to bring new predictive capabilities for both carbonation rate and extent, including the total extent of CO2 uptake by concrete in service. Finally, WP5 will focus on project management, including risk and progress assessment, and implementation of planned impact activities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项由NSF 18 - 067,NSF工程-UKRI工程和物理科学研究理事会资助。 混凝土是美国最通用的建筑材料,用于建造和维修建筑物,运输系统和能源基础设施。混凝土基础设施的开发、维护和维修对国家的增长、繁荣、公民安全和福利至关重要。混凝土是一种复杂的复合材料,由矿物骨料、水、硅酸盐水泥和添加剂的混合物制成,所述添加剂在混合时产生的初始流体中和在其最终硬化状态下增强其性能。大多数现代混凝土混合物含有补充胶凝材料(SCM),部分取代波特兰水泥,以提高混凝土的长期耐久性,降低成本,并减少与混凝土生产相关的CO2排放。最常用的SCM是废物衍生的,特别是燃煤发电厂的残余灰烬。然而,工业过程的变化和对SCM需求的增加导致了高质量、废物衍生的SCM的短缺。煅烧粘土和火山矿物等天然SCM是废物衍生SCM的一种有前途的替代品,其使用量正在上升。天然SCMs的优势在很大程度上源于其化学和矿物学;它们比废物衍生材料更均匀,这有助于质量控制。此外,它们还提供经济、环境和性能方面的好处。然而,使用SCM也有缺点,即,增加混凝土和大气CO2之间的化学碳化反应的倾向,这可能导致钢筋腐蚀、强度损失和开裂。因此,重要的是要更好地了解含有天然SCM的混凝土中的碳酸化过程,以确定在不牺牲性能的情况下赋予益处的材料和混合物。通过结合美国和英国机构之间的研究专业知识和资源,该项目将调查含有天然SCMs和CO2的新的和有前途的来源的混凝土之间的相互作用,测试和损坏检测的新方法,以及最大限度地减少退化影响的新策略。 这项研究可以导致生产更高质量,更低的环境影响的混凝土。因此,这项研究可以对混凝土基础设施的寿命和可持续性产生广泛的影响,这对全球基础设施,可持续性和劳动力发展至关重要。国家繁荣取决于对资源利用和保护采取全球性的、可持续的办法。参与该项目的学生将获得宝贵的国际研究经验。考虑到建筑领域正在增加其在混凝土中使用天然SCM,了解天然SCM对碳化降解的贡献对于该技术的可行性至关重要。此外,操纵系统的组成以减少或防止碳酸化是可能的,但以前没有探索过。这个应对CO2暴露的混凝土与天然补充胶凝材料(RENACEM)项目是美国和英国的合作研究人员在得克萨斯大学奥斯汀分校,利兹大学,和谢菲尔德大学,以阐明控制与天然SCM生产的混凝土的长期性能的基础科学。 该项目将调查混凝土和大气CO2之间的化学相互作用及其传输,以确定有意义的评估方法。这将支持采用天然SCM和新的预测模型测试混凝土碳化的新方法。国家排雷行动网由五个工作包组成。WP1将专注于天然SCM的先进表征和具有降低碳酸化敏感性的材料的开发。WP2将建立控制天然SCM基材料碳酸化的物理化学机制,将其矿物学,相组合和微观结构与其对自然和加速碳酸化的反应联系起来。 WP3将研究使用先进的光纤传感网络对天然SCM混凝土暴露于CO2后的pH值和相对湿度变化进行原位监测。WP4将超越碳化建模的最新技术水平,为碳化速率和程度带来新的预测能力,包括混凝土在使用中吸收二氧化碳的总程度。 最后,WP5将侧重于项目管理,包括风险和进度评估,以及计划影响活动的实施。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Suitability of excavated London clay from tunnelling operations as a supplementary cementitious material and expanded clay aggregate
隧道施工中挖掘出的伦敦粘土作为补充胶凝材料和膨胀粘土骨料的适用性
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Kanavaris F.;Papakosta A.;Zunino F.;Pantelidou H.;Baudet B.A.;Marsh A.T.M.;Rahmon S.;Dhandapani Y.;Bernal S.A.;Szanser J.
- 通讯作者:Szanser J.
Understanding the carbonation performance of cements containing calcined clay
了解含有煅烧粘土的水泥的碳化性能
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Dhandapani, Y.;Black, L.;Juenger, M.C.G.;Bernal, S.A.
- 通讯作者:Bernal, S.A.
Effect of the Carbonate Source on the Carbonation Performance of Blended Binders Containing Calcined Clays
碳酸盐源对含有煅烧粘土的混合粘结剂碳化性能的影响
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Dhandapani, Y.;Bhadauria, S.;Krishnan, S.;Juenger, M.C.G.;Bernal, S.A.
- 通讯作者:Bernal, S.A.
Durability performance of binary and ternary blended cementitious systems with calcined clay: a RILEM TC 282-CCL, review
含有煅烧粘土的二元和三元混合水泥体系的耐久性能:RILEM TC 282-CCL,综述
- DOI:10.1617/s11527-022-01974-0
- 发表时间:2022
- 期刊:
- 影响因子:3.8
- 作者:Dhandapani Y
- 通讯作者:Dhandapani Y
Hydration and mixture design of calcined clay blended cements: review by the RILEM TC 282-CCL
煅烧粘土混合水泥的水化和混合设计:RILEM TC 282-CCL 的审查
- DOI:10.1617/s11527-022-02060-1
- 发表时间:2022
- 期刊:
- 影响因子:3.8
- 作者:Zunino, Franco;Dhandapani, Yuvaraj;Ben Haha, Mohsen;Skibsted, Jørgen;Joseph, Shiju;Krishnan, Sreejith;Parashar, Anuj;Juenger, Maria C.;Hanein, Theodore;Bernal, Susan A.
- 通讯作者:Bernal, Susan A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria Juenger其他文献
Monitoring the strength development of alkali-activated materials using an ultrasonic cement analyzer
- DOI:
10.1016/j.petrol.2019.05.070 - 发表时间:
2019-09-01 - 期刊:
- 影响因子:
- 作者:
Parth Panchmatia;Nancy S. Zhou;Maria Juenger;Eric van Oort - 通讯作者:
Eric van Oort
Impact of accelerating admixtures on the electrical properties of ordinary portland cement pastes
- DOI:
10.1016/j.cemconcomp.2022.104651 - 发表时间:
2022-10-01 - 期刊:
- 影响因子:13.100
- 作者:
Luca Montanari;Michelle Helsel;Igor de la Varga;Robert Spragg;Maria Juenger - 通讯作者:
Maria Juenger
Maria Juenger的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maria Juenger', 18)}}的其他基金
Collaborative Research: New Natural Supplementary Cementitious Materials for Concrete
合作研究:新型天然混凝土辅助胶凝材料
- 批准号:
1030972 - 财政年份:2010
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
Inorganic Polymers for Sustainable Civil Infrastructure
用于可持续民用基础设施的无机聚合物
- 批准号:
0926627 - 财政年份:2009
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
CAREER: Alternative cements for sustainable development and concrete performance
职业:可持续发展和混凝土性能的替代水泥
- 批准号:
0448983 - 财政年份:2005
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
相似海外基金
ECCS-EPSRC Micromechanical Elements for Photonic Reconfigurable Zero-Static-Power Modules
用于光子可重构零静态功率模块的 ECCS-EPSRC 微机械元件
- 批准号:
EP/X025381/1 - 财政年份:2024
- 资助金额:
$ 47.5万 - 项目类别:
Research Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 47.5万 - 项目类别:
Research Grant
CMMI-EPSRC: Damage Tolerant 3D micro-architectured brittle materials
CMMI-EPSRC:耐损伤 3D 微结构脆性材料
- 批准号:
EP/Y032489/1 - 财政年份:2024
- 资助金额:
$ 47.5万 - 项目类别:
Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole-based spin qubits on silicon (GeQuantumBus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线 (GeQuantumBus)
- 批准号:
EP/X039889/1 - 财政年份:2024
- 资助金额:
$ 47.5万 - 项目类别:
Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole based spin qubits on silicon (Quantum Bus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线(量子总线)
- 批准号:
EP/X040380/1 - 财政年份:2024
- 资助金额:
$ 47.5万 - 项目类别:
Research Grant
CBET-EPSRC: TECAN - Telemetry-Enabled Carbon Aware Networking
CBET-EPSRC:TECAN - 支持遥测的碳感知网络
- 批准号:
EP/X040828/1 - 财政年份:2024
- 资助金额:
$ 47.5万 - 项目类别:
Research Grant
EPSRC Centre for Future PCI Planning
EPSRC 未来 PCI 规划中心
- 批准号:
EP/Z531182/1 - 财政年份:2024
- 资助金额:
$ 47.5万 - 项目类别:
Research Grant
EPSRC-SFI: Supercoiling-driven gene control in synthetic DNA circuits
EPSRC-SFI:合成 DNA 电路中超螺旋驱动的基因控制
- 批准号:
EP/V027395/2 - 财政年份:2024
- 资助金额:
$ 47.5万 - 项目类别:
Research Grant
EPSRC-SFI:Towards power efficient microresonator frequency combs
EPSRC-SFI:迈向节能微谐振器频率梳
- 批准号:
EP/X040844/1 - 财政年份:2024
- 资助金额:
$ 47.5万 - 项目类别:
Research Grant
STREAM 2: EPSRC Place Based IAA (PB-IAA);Northern Net Zero Accelerator - Energy Systems Integration for a Decarbonised Economy
流 2:EPSRC 地方基础 IAA (PB-IAA);北方净零加速器 - 脱碳经济的能源系统集成
- 批准号:
EP/Y024052/1 - 财政年份:2024
- 资助金额:
$ 47.5万 - 项目类别:
Research Grant