CMMI-EPSRC: Damage Tolerant 3D micro-architectured brittle materials
CMMI-EPSRC:耐损伤 3D 微结构脆性材料
基本信息
- 批准号:EP/Y032489/1
- 负责人:
- 金额:$ 53.39万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The search for materials that are lightweight and can withstand extreme service conditions has been a major driving force for material development in recent decades. Ceramic materials, while stable at high temperatures and in harsh environments, are limited in their structural applications due to their inherent brittleness and low damage tolerance compared to their metallic materials. An emerging class of materials referred to as micro-architectured materials offer a potential breakthrough to overcome this limitation. Our preliminary experimental results suggest that large-scale 3D micro-architectured materials, even when made from linear elastic brittle parent materials at scales that resemble bulk materials can exhibit extreme damage tolerance. Thus, in this project we propose to develop a deeper understanding of fracture and damage tolerance in a wide variety of micro-architectured materials made from (ceramic/ceramic-like) purely brittle parent materials. Our proposed research is based on two underlying hypotheses: (1) The discrete nature of the 3D micro-architectures either inherently gives rise to crack-bridging, introduces local anisotropy in the fracture toughness or both that leads to the observed extreme damage tolerance of micro-architectured materials made of inherently brittle parent materials. (2) The topological stochasticity in the 3D micro-architectures made of inherently brittle parent materials will result in diffused damage zones and enhanced crack-bridging, leading to further increase in damage tolerance. The specific objectives of our proposal are twofold. First, ascertain the crack growth and damage tolerance mechanisms of large-scale 3D periodic micro-architectures made of linear elastic brittle parent materials. Second, extend the mechanistic understanding of fracture in periodic micro-architectures to stochastic micro-architectures made of brittle ceramic parent materials. This will enable us to test our hypotheses and address several fundamental questions of technological relevance that are raised in this proposal. Our proposed education and outreach plans are also fully integrated with the research plan through a common focus on mechanics of micro-architectured materials.Classical fracture mechanics has been a highly successful theory for analyzing fracture of continuum materials. However, our preliminary results indicate that these concepts do not directly extend to discrete 3D micro-architectured materials, even those made of purely linear-elastic brittle parent materials. In particular, the discreteness of the microstructure renders standard measures of fracture properties and fracture testing protocols inadequate. This project will expand upon the traditional understanding of classical fracture mechanics and associated testing protocols by developing a comprehensive mechanistic understanding of damage tolerance and devising a novel methodology to characterize fracture response of a wide variety of 3D micro-architectured materials made from purely brittle materials. Furthermore, by gaining a deeper understanding of the correlation between micro-architecture and fracture response, we will create fracture mechanism and performance maps that can be used for selecting an optimum micro-architecture based on parameters such as size and density of the structure and loading conditions. The project's main impact lies in the development of a methodology that will enable the discovery, design, and development of lightweight, damage-tolerant micro-architectured materials for extreme loading conditions. These materials have potential uses not only in structural applications but also in relevant contemporary technologies such as energy, biomedical and micromechanical devices. This project will facilitate damage tolerance and structural integrity analysis for reliable use of micro-architectured materials in these highly sought-after technologies.
寻找轻质且能承受极端使用条件的材料是近几十年来材料发展的主要驱动力。陶瓷材料虽然在高温和恶劣环境下稳定,但与金属材料相比,由于其固有的脆性和低损伤容限,其结构应用受到限制。新兴的一类材料称为微结构材料提供了一个潜在的突破,以克服这一限制。我们的初步实验结果表明,大规模的3D微结构材料,即使是由线性弹性脆性母体材料在类似于散装材料的规模可以表现出极大的损伤容限。因此,在这个项目中,我们建议开发一个更深层次的理解断裂和损伤容限在各种各样的微结构材料(陶瓷/类陶瓷)纯脆性母体材料。我们提出的研究是基于两个基本的假设:(1)的离散性质的三维微结构固有地引起裂纹桥接,引入局部各向异性的断裂韧性或两者兼而有之,导致观察到的极端损伤容限的微结构材料制成的固有脆性母体材料。(2)由固有脆性母体材料构成的三维微结构的拓扑随机性将导致扩散的损伤区和增强的裂纹桥接,导致损伤容限的进一步增加。我们的建议有两个具体目标。首先,确定了由线弹性脆性母体材料构成的大规模三维周期微结构的裂纹扩展和损伤容限机制。其次,将周期性微结构中断裂的机理理解扩展到由脆性陶瓷母体材料制成的随机微结构。这将使我们能够检验我们的假设,并解决本提案中提出的几个与技术相关的基本问题。我们提出的教育和推广计划也通过共同关注微观结构材料力学与研究计划完全整合。经典断裂力学已经成为分析连续材料断裂的非常成功的理论。然而,我们的初步结果表明,这些概念并不直接扩展到离散的三维微结构材料,即使是那些纯粹的线弹性脆性母体材料。特别是,微观结构的离散性使得断裂性能的标准测量和断裂测试方案不足。该项目将通过对损伤容限的全面机械理解和设计一种新的方法来表征由纯脆性材料制成的各种3D微结构材料的断裂响应,从而扩展对经典断裂力学和相关测试协议的传统理解。此外,通过更深入地了解微结构和断裂响应之间的相关性,我们将创建断裂机制和性能图,这些图可用于根据结构的尺寸和密度以及载荷条件等参数选择最佳微结构。该项目的主要影响在于开发一种方法,该方法将能够发现,设计和开发用于极端负载条件的轻质,耐损伤的微结构材料。这些材料不仅在结构应用中具有潜在的用途,而且在相关的当代技术,如能源,生物医学和微机械设备中也具有潜在的用途。该项目将促进损伤容限和结构完整性分析,以便在这些备受追捧的技术中可靠地使用微结构材料。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vikram Deshpande其他文献
Leiomyoma-like Morphology in Metastatic Uterine Inflammatory Myofibroblastic Tumors
- DOI:
10.1016/j.modpat.2023.100143 - 发表时间:
2023-06-01 - 期刊:
- 影响因子:
- 作者:
Kyle M. Devins;Wesley Samore;G. Petur Nielsen;Vikram Deshpande;Esther Oliva - 通讯作者:
Esther Oliva
Targeted detection of endogenous LINE-1 proteins and ORF2p interactions
- DOI:
10.1186/s13100-024-00339-4 - 发表时间:
2025-02-06 - 期刊:
- 影响因子:3.100
- 作者:
Mathias I. Nielsen;Justina C. Wolters;Omar G. Rosas Bringas;Hua Jiang;Luciano H. Di Stefano;Mehrnoosh Oghbaie;Samira Hozeifi;Mats J. Nitert;Alienke van Pijkeren;Marieke Smit;Lars ter Morsche;Apostolos Mourtzinos;Vikram Deshpande;Martin S. Taylor;Brian T. Chait;John LaCava - 通讯作者:
John LaCava
Large and Extensive Multilocular Peritoneal Inclusion Cysts Lack Genomic Alterations and Follow an Indolent Clinical Course Despite Rare Recurrences.
尽管很少复发,但大而广泛的多房性腹膜包涵囊肿缺乏基因组改变,并且遵循惰性临床过程。
- DOI:
10.1097/pas.0000000000002249 - 发表时间:
2024 - 期刊:
- 影响因子:5.6
- 作者:
Kyle M. Devins;Esther Baranov;Yin P Hung;Brendan C. Dickson;Esther Oliva;Vikram Deshpande - 通讯作者:
Vikram Deshpande
Susceptibility to Immune Elimination of Epithelial and Quasi-mesenchymal Pancreatic Ductal Adenocarcinoma Cells under Basal Conditions and Following Treatment with FOLFIRINOX
- DOI:
10.1016/j.jamcollsurg.2021.07.305 - 发表时间:
2021-11-01 - 期刊:
- 影响因子:
- 作者:
Yurie Sekigami;Shahrzad Arya;Daniel Vallera;Vikram Deshpande;David T. Ting;Cristina R. Ferrone;Soldano Ferrone - 通讯作者:
Soldano Ferrone
Interfacial delamination of a sandwich layer by aqueous corrosion
- DOI:
10.1016/j.corsci.2022.110356 - 发表时间:
2022-07-15 - 期刊:
- 影响因子:8.500
- 作者:
Sina Askarinejad;Vikram Deshpande;Norman Fleck - 通讯作者:
Norman Fleck
Vikram Deshpande的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vikram Deshpande', 18)}}的其他基金
Graph-based Learning and design of Advanced Mechanical Metamaterials
先进机械超材料的基于图形的学习和设计
- 批准号:
EP/X02394X/1 - 财政年份:2022
- 资助金额:
$ 53.39万 - 项目类别:
Research Grant
Collaborative Research: One-Dimensional Correlated and Topological Electronic States in Ultra-Clean Carbon Nanotubes
合作研究:超洁净碳纳米管中的一维关联和拓扑电子态
- 批准号:
2005182 - 财政年份:2020
- 资助金额:
$ 53.39万 - 项目类别:
Standard Grant
QII-TAQS: Quantum Devices with Majorana Fermions in High-Quality Three-Dimensional Topological Insulator Heterostructures
QII-TAQS:高质量三维拓扑绝缘体异质结构中具有马约拉纳费米子的量子器件
- 批准号:
1936383 - 财政年份:2019
- 资助金额:
$ 53.39万 - 项目类别:
Standard Grant
相似海外基金
ECCS-EPSRC Micromechanical Elements for Photonic Reconfigurable Zero-Static-Power Modules
用于光子可重构零静态功率模块的 ECCS-EPSRC 微机械元件
- 批准号:
EP/X025381/1 - 财政年份:2024
- 资助金额:
$ 53.39万 - 项目类别:
Research Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 53.39万 - 项目类别:
Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole-based spin qubits on silicon (GeQuantumBus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线 (GeQuantumBus)
- 批准号:
EP/X039889/1 - 财政年份:2024
- 资助金额:
$ 53.39万 - 项目类别:
Research Grant
EPSRC-SFI: Developing a Quantum Bus for germanium hole based spin qubits on silicon (Quantum Bus)
EPSRC-SFI:为硅上基于锗空穴的自旋量子位开发量子总线(量子总线)
- 批准号:
EP/X040380/1 - 财政年份:2024
- 资助金额:
$ 53.39万 - 项目类别:
Research Grant
CBET-EPSRC: TECAN - Telemetry-Enabled Carbon Aware Networking
CBET-EPSRC:TECAN - 支持遥测的碳感知网络
- 批准号:
EP/X040828/1 - 财政年份:2024
- 资助金额:
$ 53.39万 - 项目类别:
Research Grant
EPSRC Centre for Future PCI Planning
EPSRC 未来 PCI 规划中心
- 批准号:
EP/Z531182/1 - 财政年份:2024
- 资助金额:
$ 53.39万 - 项目类别:
Research Grant
EPSRC-SFI: Supercoiling-driven gene control in synthetic DNA circuits
EPSRC-SFI:合成 DNA 电路中超螺旋驱动的基因控制
- 批准号:
EP/V027395/2 - 财政年份:2024
- 资助金额:
$ 53.39万 - 项目类别:
Research Grant
EPSRC-SFI:Towards power efficient microresonator frequency combs
EPSRC-SFI:迈向节能微谐振器频率梳
- 批准号:
EP/X040844/1 - 财政年份:2024
- 资助金额:
$ 53.39万 - 项目类别:
Research Grant
STREAM 2: EPSRC Place Based IAA (PB-IAA);Northern Net Zero Accelerator - Energy Systems Integration for a Decarbonised Economy
流 2:EPSRC 地方基础 IAA (PB-IAA);北方净零加速器 - 脱碳经济的能源系统集成
- 批准号:
EP/Y024052/1 - 财政年份:2024
- 资助金额:
$ 53.39万 - 项目类别:
Research Grant
ECCS-EPSRC: A new generation of cost-effective, scalable and stable radiation detectors with ultrahigh detectivity
ECCS-EPSRC:具有超高探测率的新一代经济高效、可扩展且稳定的辐射探测器
- 批准号:
EP/Y032942/1 - 财政年份:2024
- 资助金额:
$ 53.39万 - 项目类别:
Research Grant